// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* AP_MotorsTri.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include
#include
#include "AP_MotorsTri.h"
extern const AP_HAL::HAL& hal;
// init
void AP_MotorsTri::Init()
{
// call parent Init function to set-up throttle curve
AP_Motors::Init();
// set update rate for the 3 motors (but not the servo on channel 7)
set_update_rate(_speed_hz);
// set the motor_enabled flag so that the ESCs can be calibrated like other frame types
motor_enabled[AP_MOTORS_MOT_1] = true;
motor_enabled[AP_MOTORS_MOT_2] = true;
motor_enabled[AP_MOTORS_MOT_4] = true;
}
// set update rate to motors - a value in hertz
void AP_MotorsTri::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// set update rate for the 3 motors (but not the servo on channel 7)
uint32_t mask =
1U << _motor_to_channel_map[AP_MOTORS_MOT_1] |
1U << _motor_to_channel_map[AP_MOTORS_MOT_2] |
1U << _motor_to_channel_map[AP_MOTORS_MOT_4];
hal.rcout->set_freq(mask, _speed_hz);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsTri::enable()
{
// enable output channels
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_1]);
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_2]);
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_4]);
hal.rcout->enable_ch(AP_MOTORS_CH_TRI_YAW);
}
// output_min - sends minimum values out to the motors
void AP_MotorsTri::output_min()
{
// fill the motor_out[] array for HIL use
motor_out[AP_MOTORS_MOT_1] = _rc_throttle->radio_min;
motor_out[AP_MOTORS_MOT_2] = _rc_throttle->radio_min;
motor_out[AP_MOTORS_MOT_4] = _rc_throttle->radio_min;
// send minimum value to each motor
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _rc_throttle->radio_min);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_CH_TRI_YAW], _rc_yaw->radio_trim);
}
// output_armed - sends commands to the motors
void AP_MotorsTri::output_armed()
{
int16_t out_min = _rc_throttle->radio_min + _min_throttle;
int16_t out_max = _rc_throttle->radio_max;
// Throttle is 0 to 1000 only
_rc_throttle->servo_out = constrain_int16(_rc_throttle->servo_out, 0, _max_throttle);
// capture desired roll, pitch, yaw and throttle from receiver
_rc_roll->calc_pwm();
_rc_pitch->calc_pwm();
_rc_throttle->calc_pwm();
_rc_yaw->calc_pwm();
// if we are not sending a throttle output, we cut the motors
if(_rc_throttle->servo_out == 0) {
// range check spin_when_armed
if (_spin_when_armed < 0) {
_spin_when_armed = 0;
}
if (_spin_when_armed > _min_throttle) {
_spin_when_armed = _min_throttle;
}
motor_out[AP_MOTORS_MOT_1] = _rc_throttle->radio_min + _spin_when_armed;
motor_out[AP_MOTORS_MOT_2] = _rc_throttle->radio_min + _spin_when_armed;
motor_out[AP_MOTORS_MOT_4] = _rc_throttle->radio_min + _spin_when_armed;
}else{
int16_t roll_out = (float)_rc_roll->pwm_out * 0.866f;
int16_t pitch_out = _rc_pitch->pwm_out / 2;
//left front
motor_out[AP_MOTORS_MOT_2] = _rc_throttle->radio_out + roll_out + pitch_out;
//right front
motor_out[AP_MOTORS_MOT_1] = _rc_throttle->radio_out - roll_out + pitch_out;
// rear
motor_out[AP_MOTORS_MOT_4] = _rc_throttle->radio_out - _rc_pitch->pwm_out;
// Tridge's stability patch
if(motor_out[AP_MOTORS_MOT_1] > out_max) {
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_1] - out_max) >> 1;
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_1] - out_max) >> 1;
motor_out[AP_MOTORS_MOT_1] = out_max;
}
if(motor_out[AP_MOTORS_MOT_2] > out_max) {
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_2] - out_max) >> 1;
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_2] - out_max) >> 1;
motor_out[AP_MOTORS_MOT_2] = out_max;
}
if(motor_out[AP_MOTORS_MOT_4] > out_max) {
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_4] - out_max) >> 1;
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_4] - out_max) >> 1;
motor_out[AP_MOTORS_MOT_4] = out_max;
}
// adjust for throttle curve
if( _throttle_curve_enabled ) {
motor_out[AP_MOTORS_MOT_1] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_1]);
motor_out[AP_MOTORS_MOT_2] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_2]);
motor_out[AP_MOTORS_MOT_4] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_4]);
}
// ensure motors don't drop below a minimum value and stop
motor_out[AP_MOTORS_MOT_1] = max(motor_out[AP_MOTORS_MOT_1], out_min);
motor_out[AP_MOTORS_MOT_2] = max(motor_out[AP_MOTORS_MOT_2], out_min);
motor_out[AP_MOTORS_MOT_4] = max(motor_out[AP_MOTORS_MOT_4], out_min);
}
// send output to each motor
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], motor_out[AP_MOTORS_MOT_1]);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], motor_out[AP_MOTORS_MOT_2]);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], motor_out[AP_MOTORS_MOT_4]);
// also send out to tail command (we rely on any auto pilot to have updated the rc_yaw->radio_out to the correct value)
// note we do not save the radio_out to the motor_out array so it may not appear in the ch7out in the status screen of the mission planner
// note: we use _rc_tail's (aka channel 7's) REV parameter to control whether the servo is reversed or not but this is a bit nonsensical.
// a separate servo object (including min, max settings etc) would be better or at least a separate parameter to specify the direction of the tail servo
if( _rc_tail->get_reverse() == true ) {
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _rc_yaw->radio_trim - (_rc_yaw->radio_out - _rc_yaw->radio_trim));
}else{
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _rc_yaw->radio_out);
}
}
// output_disarmed - sends commands to the motors
void AP_MotorsTri::output_disarmed()
{
// fill the motor_out[] array for HIL use
for (unsigned char i = AP_MOTORS_MOT_1; i < AP_MOTORS_MOT_4; i++) {
motor_out[i] = _rc_throttle->radio_min;
}
// Send minimum values to all motors
output_min();
}
// output_disarmed - sends commands to the motors
void AP_MotorsTri::output_test()
{
// Send minimum values to all motors
output_min();
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min);
hal.scheduler->delay(4000);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min + _min_throttle);
hal.scheduler->delay(300);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _rc_throttle->radio_min);
hal.scheduler->delay(2000);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _rc_throttle->radio_min + _min_throttle);
hal.scheduler->delay(300);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _rc_throttle->radio_min);
hal.scheduler->delay(2000);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _rc_throttle->radio_min + _min_throttle);
hal.scheduler->delay(300);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], motor_out[AP_MOTORS_MOT_1]);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], motor_out[AP_MOTORS_MOT_2]);
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], motor_out[AP_MOTORS_MOT_4]);
}