/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_WheelEncoder.h" #include "WheelEncoder_Quadrature.h" #include "WheelEncoder_SITL_Quadrature.h" #include extern const AP_HAL::HAL& hal; // table of user settable parameters const AP_Param::GroupInfo AP_WheelEncoder::var_info[] = { // @Param: _TYPE // @DisplayName: WheelEncoder type // @Description: What type of WheelEncoder is connected // @Values: 0:None,1:Quadrature,10:SITL Quadrature // @User: Standard AP_GROUPINFO_FLAGS("_TYPE", 0, AP_WheelEncoder, _type[0], 0, AP_PARAM_FLAG_ENABLE), // @Param: _CPR // @DisplayName: WheelEncoder counts per revolution // @Description: WheelEncoder counts per full revolution of the wheel // @Increment: 1 // @User: Standard AP_GROUPINFO("_CPR", 1, AP_WheelEncoder, _counts_per_revolution[0], WHEELENCODER_CPR_DEFAULT), // @Param: _RADIUS // @DisplayName: Wheel radius // @Description: Wheel radius // @Units: m // @Increment: 0.001 // @User: Standard AP_GROUPINFO("_RADIUS", 2, AP_WheelEncoder, _wheel_radius[0], WHEELENCODER_RADIUS_DEFAULT), // @Param: _POS_X // @DisplayName: Wheel's X position offset // @Description: X position of the center of the wheel in body frame. Positive X is forward of the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Standard // @Param: _POS_Y // @DisplayName: Wheel's Y position offset // @Description: Y position of the center of the wheel in body frame. Positive Y is to the right of the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Standard // @Param: _POS_Z // @DisplayName: Wheel's Z position offset // @Description: Z position of the center of the wheel in body frame. Positive Z is down from the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Standard AP_GROUPINFO("_POS", 3, AP_WheelEncoder, _pos_offset[0], 0.0f), // @Param: _PINA // @DisplayName: Input Pin A // @Description: Input Pin A // @Values: -1:Disabled,50:AUX1,51:AUX2,52:AUX3,53:AUX4,54:AUX5,55:AUX6 // @User: Standard AP_GROUPINFO("_PINA", 4, AP_WheelEncoder, _pina[0], -1), // @Param: _PINB // @DisplayName: Input Pin B // @Description: Input Pin B // @Values: -1:Disabled,50:AUX1,51:AUX2,52:AUX3,53:AUX4,54:AUX5,55:AUX6 // @User: Standard AP_GROUPINFO("_PINB", 5, AP_WheelEncoder, _pinb[0], -1), #if WHEELENCODER_MAX_INSTANCES > 1 // @Param: 2_TYPE // @DisplayName: Second WheelEncoder type // @Description: What type of WheelEncoder sensor is connected // @Values: 0:None,1:Quadrature,10:SITL Quadrature // @User: Standard AP_GROUPINFO("2_TYPE", 6, AP_WheelEncoder, _type[1], 0), // @Param: 2_CPR // @DisplayName: WheelEncoder 2 counts per revolution // @Description: WheelEncoder 2 counts per full revolution of the wheel // @Increment: 1 // @User: Standard AP_GROUPINFO("2_CPR", 7, AP_WheelEncoder, _counts_per_revolution[1], WHEELENCODER_CPR_DEFAULT), // @Param: 2_RADIUS // @DisplayName: Wheel2's radius // @Description: Wheel2's radius // @Units: m // @Increment: 0.001 // @User: Standard AP_GROUPINFO("2_RADIUS", 8, AP_WheelEncoder, _wheel_radius[1], WHEELENCODER_RADIUS_DEFAULT), // @Param: 2_POS_X // @DisplayName: Wheel2's X position offset // @Description: X position of the center of the second wheel in body frame. Positive X is forward of the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Standard // @Param: 2_POS_Y // @DisplayName: Wheel2's Y position offset // @Description: Y position of the center of the second wheel in body frame. Positive Y is to the right of the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Standard // @Param: 2_POS_Z // @DisplayName: Wheel2's Z position offset // @Description: Z position of the center of the second wheel in body frame. Positive Z is down from the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Standard AP_GROUPINFO("2_POS", 9, AP_WheelEncoder, _pos_offset[1], 0.0f), // @Param: 2_PINA // @DisplayName: Second Encoder Input Pin A // @Description: Second Encoder Input Pin A // @Values: -1:Disabled,50:AUX1,51:AUX2,52:AUX3,53:AUX4,54:AUX5,55:AUX6 // @User: Standard AP_GROUPINFO("2_PINA", 10, AP_WheelEncoder, _pina[1], 53), // @Param: 2_PINB // @DisplayName: Second Encoder Input Pin B // @Description: Second Encoder Input Pin B // @Values: -1:Disabled,50:AUX1,51:AUX2,52:AUX3,53:AUX4,54:AUX5,55:AUX6 // @User: Standard AP_GROUPINFO("2_PINB", 11, AP_WheelEncoder, _pinb[1], 52), #endif AP_GROUPEND }; AP_WheelEncoder::AP_WheelEncoder(void) { _singleton = this; AP_Param::setup_object_defaults(this, var_info); } // initialise the AP_WheelEncoder class. void AP_WheelEncoder::init(void) { if (num_instances != 0) { // init called a 2nd time? return; } for (uint8_t i=0; iupdate(); } } } #if HAL_LOGGING_ENABLED // log wheel encoder information void AP_WheelEncoder::Log_Write() const { // return immediately if no wheel encoders are enabled if (!enabled(0) && !enabled(1)) { return; } struct log_WheelEncoder pkt = { LOG_PACKET_HEADER_INIT(LOG_WHEELENCODER_MSG), time_us : AP_HAL::micros64(), distance_0 : get_distance(0), quality_0 : (uint8_t)get_signal_quality(0), distance_1 : get_distance(1), quality_1 : (uint8_t)get_signal_quality(1), }; AP::logger().WriteBlock(&pkt, sizeof(pkt)); } #endif // check if an instance is healthy bool AP_WheelEncoder::healthy(uint8_t instance) const { if (instance >= num_instances) { return false; } return true; } // check if an instance is activated bool AP_WheelEncoder::enabled(uint8_t instance) const { if (instance >= num_instances) { return false; } // if no sensor type is selected, the sensor is not activated. if (_type[instance] == WheelEncoder_TYPE_NONE) { return false; } return true; } // get the counts per revolution of the encoder uint16_t AP_WheelEncoder::get_counts_per_revolution(uint8_t instance) const { // for invalid instances return zero vector if (instance >= WHEELENCODER_MAX_INSTANCES) { return 0; } return (uint16_t)_counts_per_revolution[instance]; } // get the wheel radius in meters float AP_WheelEncoder::get_wheel_radius(uint8_t instance) const { // for invalid instances return zero vector if (instance >= WHEELENCODER_MAX_INSTANCES) { return 0.0f; } return _wheel_radius[instance]; } // return a 3D vector defining the position offset of the center of the wheel in meters relative to the body frame origin const Vector3f &AP_WheelEncoder::get_pos_offset(uint8_t instance) const { // for invalid instances return zero vector if (instance >= WHEELENCODER_MAX_INSTANCES) { return pos_offset_zero; } return _pos_offset[instance]; } // get total delta angle (in radians) measured by the wheel encoder float AP_WheelEncoder::get_delta_angle(uint8_t instance) const { // for invalid instances return zero if (instance >= WHEELENCODER_MAX_INSTANCES) { return 0.0f; } // protect against divide by zero if (_counts_per_revolution[instance] == 0) { return 0.0f; } return M_2PI * state[instance].distance_count / _counts_per_revolution[instance]; } // get the total distance traveled in meters float AP_WheelEncoder::get_distance(uint8_t instance) const { // for invalid instances return zero return get_delta_angle(instance) * _wheel_radius[instance]; } // get the instantaneous rate in radians/second float AP_WheelEncoder::get_rate(uint8_t instance) const { // for invalid instances return zero if (instance >= WHEELENCODER_MAX_INSTANCES) { return 0.0f; } // protect against divide by zero if ((state[instance].dt_ms == 0) || _counts_per_revolution[instance] == 0) { return 0; } // calculate delta_angle (in radians) per second return M_2PI * (state[instance].dist_count_change / ((float)_counts_per_revolution[instance])) / (state[instance].dt_ms * 1e-3f); } // get the total number of sensor reading from the encoder uint32_t AP_WheelEncoder::get_total_count(uint8_t instance) const { // for invalid instances return zero if (instance >= WHEELENCODER_MAX_INSTANCES) { return 0; } return state[instance].total_count; } // get the total distance traveled in meters uint32_t AP_WheelEncoder::get_error_count(uint8_t instance) const { // for invalid instances return zero if (instance >= WHEELENCODER_MAX_INSTANCES) { return 0; } return state[instance].error_count; } // get the signal quality for a sensor float AP_WheelEncoder::get_signal_quality(uint8_t instance) const { // protect against divide by zero if (state[instance].total_count == 0) { return 0.0f; } return constrain_float((1.0f - ((float)state[instance].error_count / (float)state[instance].total_count)) * 100.0f, 0.0f, 100.0f); } // get the system time (in milliseconds) of the last update uint32_t AP_WheelEncoder::get_last_reading_ms(uint8_t instance) const { // for invalid instances return zero if (instance >= WHEELENCODER_MAX_INSTANCES) { return 0; } return state[instance].last_reading_ms; } // singleton instance AP_WheelEncoder *AP_WheelEncoder::_singleton; namespace AP { AP_WheelEncoder *wheelencoder() { return AP_WheelEncoder::get_singleton(); } }