/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "AP_WheelEncoder.h"
#include "WheelEncoder_Quadrature.h"
#include "WheelEncoder_SITL_Quadrature.h"
#include
extern const AP_HAL::HAL& hal;
// table of user settable parameters
const AP_Param::GroupInfo AP_WheelEncoder::var_info[] = {
// @Param: _TYPE
// @DisplayName: WheelEncoder type
// @Description: What type of WheelEncoder is connected
// @Values: 0:None,1:Quadrature,10:SITL Quadrature
// @User: Standard
AP_GROUPINFO_FLAGS("_TYPE", 0, AP_WheelEncoder, _type[0], 0, AP_PARAM_FLAG_ENABLE),
// @Param: _CPR
// @DisplayName: WheelEncoder counts per revolution
// @Description: WheelEncoder counts per full revolution of the wheel
// @Increment: 1
// @User: Standard
AP_GROUPINFO("_CPR", 1, AP_WheelEncoder, _counts_per_revolution[0], WHEELENCODER_CPR_DEFAULT),
// @Param: _RADIUS
// @DisplayName: Wheel radius
// @Description: Wheel radius
// @Units: m
// @Increment: 0.001
// @User: Standard
AP_GROUPINFO("_RADIUS", 2, AP_WheelEncoder, _wheel_radius[0], WHEELENCODER_RADIUS_DEFAULT),
// @Param: _POS_X
// @DisplayName: Wheel's X position offset
// @Description: X position of the center of the wheel in body frame. Positive X is forward of the origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Standard
// @Param: _POS_Y
// @DisplayName: Wheel's Y position offset
// @Description: Y position of the center of the wheel in body frame. Positive Y is to the right of the origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Standard
// @Param: _POS_Z
// @DisplayName: Wheel's Z position offset
// @Description: Z position of the center of the wheel in body frame. Positive Z is down from the origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Standard
AP_GROUPINFO("_POS", 3, AP_WheelEncoder, _pos_offset[0], 0.0f),
// @Param: _PINA
// @DisplayName: Input Pin A
// @Description: Input Pin A
// @Values: -1:Disabled,50:AUX1,51:AUX2,52:AUX3,53:AUX4,54:AUX5,55:AUX6
// @User: Standard
AP_GROUPINFO("_PINA", 4, AP_WheelEncoder, _pina[0], -1),
// @Param: _PINB
// @DisplayName: Input Pin B
// @Description: Input Pin B
// @Values: -1:Disabled,50:AUX1,51:AUX2,52:AUX3,53:AUX4,54:AUX5,55:AUX6
// @User: Standard
AP_GROUPINFO("_PINB", 5, AP_WheelEncoder, _pinb[0], -1),
#if WHEELENCODER_MAX_INSTANCES > 1
// @Param: 2_TYPE
// @DisplayName: Second WheelEncoder type
// @Description: What type of WheelEncoder sensor is connected
// @Values: 0:None,1:Quadrature,10:SITL Quadrature
// @User: Standard
AP_GROUPINFO("2_TYPE", 6, AP_WheelEncoder, _type[1], 0),
// @Param: 2_CPR
// @DisplayName: WheelEncoder 2 counts per revolution
// @Description: WheelEncoder 2 counts per full revolution of the wheel
// @Increment: 1
// @User: Standard
AP_GROUPINFO("2_CPR", 7, AP_WheelEncoder, _counts_per_revolution[1], WHEELENCODER_CPR_DEFAULT),
// @Param: 2_RADIUS
// @DisplayName: Wheel2's radius
// @Description: Wheel2's radius
// @Units: m
// @Increment: 0.001
// @User: Standard
AP_GROUPINFO("2_RADIUS", 8, AP_WheelEncoder, _wheel_radius[1], WHEELENCODER_RADIUS_DEFAULT),
// @Param: 2_POS_X
// @DisplayName: Wheel2's X position offset
// @Description: X position of the center of the second wheel in body frame. Positive X is forward of the origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Standard
// @Param: 2_POS_Y
// @DisplayName: Wheel2's Y position offset
// @Description: Y position of the center of the second wheel in body frame. Positive Y is to the right of the origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Standard
// @Param: 2_POS_Z
// @DisplayName: Wheel2's Z position offset
// @Description: Z position of the center of the second wheel in body frame. Positive Z is down from the origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Standard
AP_GROUPINFO("2_POS", 9, AP_WheelEncoder, _pos_offset[1], 0.0f),
// @Param: 2_PINA
// @DisplayName: Second Encoder Input Pin A
// @Description: Second Encoder Input Pin A
// @Values: -1:Disabled,50:AUX1,51:AUX2,52:AUX3,53:AUX4,54:AUX5,55:AUX6
// @User: Standard
AP_GROUPINFO("2_PINA", 10, AP_WheelEncoder, _pina[1], 53),
// @Param: 2_PINB
// @DisplayName: Second Encoder Input Pin B
// @Description: Second Encoder Input Pin B
// @Values: -1:Disabled,50:AUX1,51:AUX2,52:AUX3,53:AUX4,54:AUX5,55:AUX6
// @User: Standard
AP_GROUPINFO("2_PINB", 11, AP_WheelEncoder, _pinb[1], 52),
#endif
AP_GROUPEND
};
AP_WheelEncoder::AP_WheelEncoder(void)
{
_singleton = this;
AP_Param::setup_object_defaults(this, var_info);
}
// initialise the AP_WheelEncoder class.
void AP_WheelEncoder::init(void)
{
if (num_instances != 0) {
// init called a 2nd time?
return;
}
for (uint8_t i=0; iupdate();
}
}
}
#if HAL_LOGGING_ENABLED
// log wheel encoder information
void AP_WheelEncoder::Log_Write() const
{
// return immediately if no wheel encoders are enabled
if (!enabled(0) && !enabled(1)) {
return;
}
struct log_WheelEncoder pkt = {
LOG_PACKET_HEADER_INIT(LOG_WHEELENCODER_MSG),
time_us : AP_HAL::micros64(),
distance_0 : get_distance(0),
quality_0 : (uint8_t)get_signal_quality(0),
distance_1 : get_distance(1),
quality_1 : (uint8_t)get_signal_quality(1),
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
#endif
// check if an instance is healthy
bool AP_WheelEncoder::healthy(uint8_t instance) const
{
if (instance >= num_instances) {
return false;
}
return true;
}
// check if an instance is activated
bool AP_WheelEncoder::enabled(uint8_t instance) const
{
if (instance >= num_instances) {
return false;
}
// if no sensor type is selected, the sensor is not activated.
if (_type[instance] == WheelEncoder_TYPE_NONE) {
return false;
}
return true;
}
// get the counts per revolution of the encoder
uint16_t AP_WheelEncoder::get_counts_per_revolution(uint8_t instance) const
{
// for invalid instances return zero vector
if (instance >= WHEELENCODER_MAX_INSTANCES) {
return 0;
}
return (uint16_t)_counts_per_revolution[instance];
}
// get the wheel radius in meters
float AP_WheelEncoder::get_wheel_radius(uint8_t instance) const
{
// for invalid instances return zero vector
if (instance >= WHEELENCODER_MAX_INSTANCES) {
return 0.0f;
}
return _wheel_radius[instance];
}
// return a 3D vector defining the position offset of the center of the wheel in meters relative to the body frame origin
const Vector3f &AP_WheelEncoder::get_pos_offset(uint8_t instance) const
{
// for invalid instances return zero vector
if (instance >= WHEELENCODER_MAX_INSTANCES) {
return pos_offset_zero;
}
return _pos_offset[instance];
}
// get total delta angle (in radians) measured by the wheel encoder
float AP_WheelEncoder::get_delta_angle(uint8_t instance) const
{
// for invalid instances return zero
if (instance >= WHEELENCODER_MAX_INSTANCES) {
return 0.0f;
}
// protect against divide by zero
if (_counts_per_revolution[instance] == 0) {
return 0.0f;
}
return M_2PI * state[instance].distance_count / _counts_per_revolution[instance];
}
// get the total distance traveled in meters
float AP_WheelEncoder::get_distance(uint8_t instance) const
{
// for invalid instances return zero
return get_delta_angle(instance) * _wheel_radius[instance];
}
// get the instantaneous rate in radians/second
float AP_WheelEncoder::get_rate(uint8_t instance) const
{
// for invalid instances return zero
if (instance >= WHEELENCODER_MAX_INSTANCES) {
return 0.0f;
}
// protect against divide by zero
if ((state[instance].dt_ms == 0) || _counts_per_revolution[instance] == 0) {
return 0;
}
// calculate delta_angle (in radians) per second
return M_2PI * (state[instance].dist_count_change / ((float)_counts_per_revolution[instance])) / (state[instance].dt_ms * 1e-3f);
}
// get the total number of sensor reading from the encoder
uint32_t AP_WheelEncoder::get_total_count(uint8_t instance) const
{
// for invalid instances return zero
if (instance >= WHEELENCODER_MAX_INSTANCES) {
return 0;
}
return state[instance].total_count;
}
// get the total distance traveled in meters
uint32_t AP_WheelEncoder::get_error_count(uint8_t instance) const
{
// for invalid instances return zero
if (instance >= WHEELENCODER_MAX_INSTANCES) {
return 0;
}
return state[instance].error_count;
}
// get the signal quality for a sensor
float AP_WheelEncoder::get_signal_quality(uint8_t instance) const
{
// protect against divide by zero
if (state[instance].total_count == 0) {
return 0.0f;
}
return constrain_float((1.0f - ((float)state[instance].error_count / (float)state[instance].total_count)) * 100.0f, 0.0f, 100.0f);
}
// get the system time (in milliseconds) of the last update
uint32_t AP_WheelEncoder::get_last_reading_ms(uint8_t instance) const
{
// for invalid instances return zero
if (instance >= WHEELENCODER_MAX_INSTANCES) {
return 0;
}
return state[instance].last_reading_ms;
}
// singleton instance
AP_WheelEncoder *AP_WheelEncoder::_singleton;
namespace AP {
AP_WheelEncoder *wheelencoder()
{
return AP_WheelEncoder::get_singleton();
}
}