#include "GCS_Mavlink.h" #include "Plane.h" #include #include #include MAV_TYPE GCS_Plane::frame_type() const { #if HAL_QUADPLANE_ENABLED return plane.quadplane.get_mav_type(); #else return MAV_TYPE_FIXED_WING; #endif } MAV_MODE GCS_MAVLINK_Plane::base_mode() const { uint8_t _base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation switch (plane.control_mode->mode_number()) { case Mode::Number::MANUAL: case Mode::Number::TRAINING: case Mode::Number::ACRO: #if HAL_QUADPLANE_ENABLED case Mode::Number::QACRO: _base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; break; #endif case Mode::Number::STABILIZE: case Mode::Number::FLY_BY_WIRE_A: case Mode::Number::AUTOTUNE: case Mode::Number::FLY_BY_WIRE_B: #if HAL_QUADPLANE_ENABLED case Mode::Number::QSTABILIZE: case Mode::Number::QHOVER: case Mode::Number::QLOITER: case Mode::Number::QLAND: #if QAUTOTUNE_ENABLED case Mode::Number::QAUTOTUNE: #endif #endif // HAL_QUADPLANE_ENABLED case Mode::Number::CRUISE: _base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED; break; case Mode::Number::AUTO: case Mode::Number::RTL: case Mode::Number::LOITER: case Mode::Number::THERMAL: case Mode::Number::AVOID_ADSB: case Mode::Number::GUIDED: case Mode::Number::CIRCLE: case Mode::Number::TAKEOFF: #if HAL_QUADPLANE_ENABLED case Mode::Number::QRTL: case Mode::Number::LOITER_ALT_QLAND: #endif _base_mode = MAV_MODE_FLAG_GUIDED_ENABLED | MAV_MODE_FLAG_STABILIZE_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; case Mode::Number::INITIALISING: break; } if (!plane.training_manual_pitch || !plane.training_manual_roll) { _base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED; } if (plane.control_mode != &plane.mode_manual && plane.control_mode != &plane.mode_initializing) { // stabiliser of some form is enabled _base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED; } if (plane.g.stick_mixing != StickMixing::NONE && plane.control_mode != &plane.mode_initializing) { if ((plane.g.stick_mixing != StickMixing::VTOL_YAW) || (plane.control_mode == &plane.mode_auto)) { // all modes except INITIALISING have some form of manual // override if stick mixing is enabled _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; } } // we are armed if we are not initialising if (plane.control_mode != &plane.mode_initializing && plane.arming.is_armed()) { _base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode _base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; return (MAV_MODE)_base_mode; } uint32_t GCS_Plane::custom_mode() const { return plane.control_mode->mode_number(); } MAV_STATE GCS_MAVLINK_Plane::vehicle_system_status() const { if (plane.control_mode == &plane.mode_initializing) { return MAV_STATE_CALIBRATING; } if (plane.any_failsafe_triggered()) { return MAV_STATE_CRITICAL; } if (plane.crash_state.is_crashed) { return MAV_STATE_EMERGENCY; } if (plane.is_flying()) { return MAV_STATE_ACTIVE; } return MAV_STATE_STANDBY; } void GCS_MAVLINK_Plane::send_attitude() const { const AP_AHRS &ahrs = AP::ahrs(); float r = ahrs.get_roll(); float p = ahrs.get_pitch(); float y = ahrs.get_yaw(); if (!(plane.flight_option_enabled(FlightOptions::GCS_REMOVE_TRIM_PITCH))) { p -= radians(plane.g.pitch_trim); } #if HAL_QUADPLANE_ENABLED if (plane.quadplane.show_vtol_view()) { r = plane.quadplane.ahrs_view->roll; p = plane.quadplane.ahrs_view->pitch; y = plane.quadplane.ahrs_view->yaw; } #endif const Vector3f &omega = ahrs.get_gyro(); mavlink_msg_attitude_send( chan, millis(), r, p, y, omega.x, omega.y, omega.z); } void GCS_MAVLINK_Plane::send_attitude_target() { #if HAL_QUADPLANE_ENABLED // Check if the attitude target is valid for reporting const uint32_t now = AP_HAL::millis(); if (now - plane.quadplane.last_att_control_ms > 100) { return; } const Quaternion quat = plane.quadplane.attitude_control->get_attitude_target_quat(); const Vector3f& ang_vel = plane.quadplane.attitude_control->get_attitude_target_ang_vel(); const float throttle = plane.quadplane.attitude_control->get_throttle_in(); const float quat_out[4] {quat.q1, quat.q2, quat.q3, quat.q4}; const uint16_t typemask = 0; mavlink_msg_attitude_target_send( chan, now, // time since boot (ms) typemask, // Bitmask that tells the system what control dimensions should be ignored by the vehicle quat_out, // Target attitude quaternion [w, x, y, z] order, zero-rotation is [1, 0, 0, 0], unit-length ang_vel.x, // bodyframe target roll rate (rad/s) ang_vel.y, // bodyframe target pitch rate (rad/s) ang_vel.z, // bodyframe yaw rate (rad/s) throttle); // Collective thrust, normalized to 0 .. 1 #endif // HAL_QUADPLANE_ENABLED } void GCS_MAVLINK_Plane::send_aoa_ssa() { AP_AHRS &ahrs = AP::ahrs(); mavlink_msg_aoa_ssa_send( chan, micros(), ahrs.getAOA(), ahrs.getSSA()); } void GCS_MAVLINK_Plane::send_nav_controller_output() const { if (plane.control_mode == &plane.mode_manual) { return; } #if HAL_QUADPLANE_ENABLED const QuadPlane &quadplane = plane.quadplane; if (quadplane.show_vtol_view() && quadplane.using_wp_nav()) { const Vector3f &targets = quadplane.attitude_control->get_att_target_euler_cd(); const Vector2f& curr_pos = quadplane.inertial_nav.get_position_xy_cm(); const Vector2f& target_pos = quadplane.pos_control->get_pos_target_cm().xy().tofloat(); const Vector2f error = (target_pos - curr_pos) * 0.01; mavlink_msg_nav_controller_output_send( chan, targets.x * 0.01, targets.y * 0.01, targets.z * 0.01, degrees(error.angle()), MIN(error.length(), UINT16_MAX), (plane.control_mode != &plane.mode_qstabilize) ? quadplane.pos_control->get_pos_error_z_cm() * 0.01 : 0, plane.airspeed_error * 100, // incorrect units; see PR#7933 quadplane.wp_nav->crosstrack_error()); return; } #endif { const AP_Navigation *nav_controller = plane.nav_controller; mavlink_msg_nav_controller_output_send( chan, plane.nav_roll_cd * 0.01, plane.nav_pitch_cd * 0.01, nav_controller->nav_bearing_cd() * 0.01, nav_controller->target_bearing_cd() * 0.01, MIN(plane.auto_state.wp_distance, UINT16_MAX), plane.calc_altitude_error_cm() * 0.01, plane.airspeed_error * 100, // incorrect units; see PR#7933 nav_controller->crosstrack_error()); } } void GCS_MAVLINK_Plane::send_position_target_global_int() { if (plane.control_mode == &plane.mode_manual) { return; } Location &next_WP_loc = plane.next_WP_loc; static constexpr uint16_t POSITION_TARGET_TYPEMASK_LAST_BYTE = 0xF000; static constexpr uint16_t TYPE_MASK = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE | POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE | POSITION_TARGET_TYPEMASK_YAW_IGNORE | POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE | POSITION_TARGET_TYPEMASK_LAST_BYTE; int32_t alt = 0; if (!next_WP_loc.is_zero()) { UNUSED_RESULT(next_WP_loc.get_alt_cm(Location::AltFrame::ABSOLUTE, alt)); } mavlink_msg_position_target_global_int_send( chan, AP_HAL::millis(), // time_boot_ms MAV_FRAME_GLOBAL, // targets are always global altitude TYPE_MASK, // ignore everything except the x/y/z components next_WP_loc.lat, // latitude as 1e7 next_WP_loc.lng, // longitude as 1e7 alt * 0.01, // altitude is sent as a float 0.0f, // vx 0.0f, // vy 0.0f, // vz 0.0f, // afx 0.0f, // afy 0.0f, // afz 0.0f, // yaw 0.0f); // yaw_rate } float GCS_MAVLINK_Plane::vfr_hud_airspeed() const { // airspeed sensors are best. While the AHRS airspeed_estimate // will use an airspeed sensor, that value is constrained by the // ground speed. When reporting we should send the true airspeed // value if possible: #if AP_AIRSPEED_ENABLED if (plane.airspeed.enabled() && plane.airspeed.healthy()) { return plane.airspeed.get_airspeed(); } #endif // airspeed estimates are OK: float aspeed; if (AP::ahrs().airspeed_estimate(aspeed)) { return aspeed; } // lying is worst: return 0; } int16_t GCS_MAVLINK_Plane::vfr_hud_throttle() const { return plane.throttle_percentage(); } float GCS_MAVLINK_Plane::vfr_hud_climbrate() const { #if HAL_SOARING_ENABLED if (plane.g2.soaring_controller.is_active()) { return plane.g2.soaring_controller.get_vario_reading(); } #endif return GCS_MAVLINK::vfr_hud_climbrate(); } void GCS_MAVLINK_Plane::send_wind() const { const Vector3f wind = AP::ahrs().wind_estimate(); mavlink_msg_wind_send( chan, degrees(atan2f(-wind.y, -wind.x)), // use negative, to give // direction wind is coming from wind.length(), wind.z); } // sends a single pid info over the provided channel void GCS_MAVLINK_Plane::send_pid_info(const AP_PIDInfo *pid_info, const uint8_t axis, const float achieved) { if (pid_info == nullptr) { return; } if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } mavlink_msg_pid_tuning_send(chan, axis, pid_info->target, achieved, pid_info->FF, pid_info->P, pid_info->I, pid_info->D, pid_info->slew_rate, pid_info->Dmod); } /* send PID tuning message */ void GCS_MAVLINK_Plane::send_pid_tuning() { if (plane.control_mode == &plane.mode_manual) { // no PIDs should be used in manual return; } const Parameters &g = plane.g; const AP_PIDInfo *pid_info; if (g.gcs_pid_mask & TUNING_BITS_ROLL) { pid_info = &plane.rollController.get_pid_info(); #if HAL_QUADPLANE_ENABLED if (plane.quadplane.in_vtol_mode()) { pid_info = &plane.quadplane.attitude_control->get_rate_roll_pid().get_pid_info(); } #endif send_pid_info(pid_info, PID_TUNING_ROLL, pid_info->actual); } if (g.gcs_pid_mask & TUNING_BITS_PITCH) { pid_info = &plane.pitchController.get_pid_info(); #if HAL_QUADPLANE_ENABLED if (plane.quadplane.in_vtol_mode()) { pid_info = &plane.quadplane.attitude_control->get_rate_pitch_pid().get_pid_info(); } #endif send_pid_info(pid_info, PID_TUNING_PITCH, pid_info->actual); } if (g.gcs_pid_mask & TUNING_BITS_YAW) { pid_info = &plane.yawController.get_pid_info(); #if HAL_QUADPLANE_ENABLED if (plane.quadplane.in_vtol_mode()) { pid_info = &plane.quadplane.attitude_control->get_rate_yaw_pid().get_pid_info(); } #endif send_pid_info(pid_info, PID_TUNING_YAW, pid_info->actual); } if (g.gcs_pid_mask & TUNING_BITS_STEER) { pid_info = &plane.steerController.get_pid_info(); send_pid_info(pid_info, PID_TUNING_STEER, pid_info->actual); } if ((g.gcs_pid_mask & TUNING_BITS_LAND) && (plane.flight_stage == AP_FixedWing::FlightStage::LAND)) { AP_AHRS &ahrs = AP::ahrs(); const Vector3f &gyro = ahrs.get_gyro(); send_pid_info(plane.landing.get_pid_info(), PID_TUNING_LANDING, degrees(gyro.z)); } #if HAL_QUADPLANE_ENABLED if (g.gcs_pid_mask & TUNING_BITS_ACCZ && plane.quadplane.in_vtol_mode()) { pid_info = &plane.quadplane.pos_control->get_accel_z_pid().get_pid_info(); send_pid_info(pid_info, PID_TUNING_ACCZ, pid_info->actual); } #endif } uint8_t GCS_MAVLINK_Plane::sysid_my_gcs() const { return plane.g.sysid_my_gcs; } bool GCS_MAVLINK_Plane::sysid_enforce() const { return plane.g2.sysid_enforce; } uint32_t GCS_MAVLINK_Plane::telem_delay() const { return (uint32_t)(plane.g.telem_delay); } // try to send a message, return false if it won't fit in the serial tx buffer bool GCS_MAVLINK_Plane::try_send_message(enum ap_message id) { switch (id) { case MSG_SERVO_OUT: // unused break; case MSG_TERRAIN: #if AP_TERRAIN_AVAILABLE CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST); plane.terrain.send_request(chan); #endif break; case MSG_WIND: CHECK_PAYLOAD_SIZE(WIND); send_wind(); break; case MSG_ADSB_VEHICLE: #if HAL_ADSB_ENABLED CHECK_PAYLOAD_SIZE(ADSB_VEHICLE); plane.adsb.send_adsb_vehicle(chan); #endif break; case MSG_AOA_SSA: CHECK_PAYLOAD_SIZE(AOA_SSA); send_aoa_ssa(); break; case MSG_LANDING: plane.landing.send_landing_message(chan); break; case MSG_HYGROMETER: #if AP_AIRSPEED_HYGROMETER_ENABLE CHECK_PAYLOAD_SIZE(HYGROMETER_SENSOR); send_hygrometer(); #endif break; default: return GCS_MAVLINK::try_send_message(id); } return true; } #if AP_AIRSPEED_HYGROMETER_ENABLE void GCS_MAVLINK_Plane::send_hygrometer() { if (!HAVE_PAYLOAD_SPACE(chan, HYGROMETER_SENSOR)) { return; } const auto *airspeed = AP::airspeed(); if (airspeed == nullptr) { return; } const uint32_t now = AP_HAL::millis(); for (uint8_t i=0; iget_hygrometer(idx, last_sample_ms, temperature, humidity)) { continue; } if (now - last_sample_ms > 2000) { // not updating, stop sending continue; } if (!HAVE_PAYLOAD_SPACE(chan, HYGROMETER_SENSOR)) { return; } mavlink_msg_hygrometer_sensor_send( chan, idx, int16_t(temperature*100), uint16_t(humidity*100)); last_hygrometer_send_idx = idx; } } #endif // AP_AIRSPEED_HYGROMETER_ENABLE /* default stream rates to 1Hz */ const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: MAVLink Stream rate of RAW_IMU, SCALED_IMU2, SCALED_IMU3, SCALED_PRESSURE, SCALED_PRESSURE2, and SCALED_PRESSURE3 // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK_Parameters, streamRates[0], 1), // @Param: EXT_STAT // @DisplayName: Extended status stream rate // @Description: MAVLink Stream rate of SYS_STATUS, POWER_STATUS, MCU_STATUS, MEMINFO, CURRENT_WAYPOINT, GPS_RAW_INT, GPS_RTK (if available), GPS2_RAW_INT (if available), GPS2_RTK (if available), NAV_CONTROLLER_OUTPUT, FENCE_STATUS, and GLOBAL_TARGET_POS_INT // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK_Parameters, streamRates[1], 1), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate // @Description: MAVLink Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK_Parameters, streamRates[2], 1), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate // @Description: MAVLink Raw Control stream rate of SERVO_OUT // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK_Parameters, streamRates[3], 1), // @Param: POSITION // @DisplayName: Position stream rate // @Description: MAVLink Stream rate of GLOBAL_POSITION_INT and LOCAL_POSITION_NED // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK_Parameters, streamRates[4], 1), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate // @Description: MAVLink Stream rate of ATTITUDE, SIMSTATE (SIM only), AHRS2, RPM, AOA_SSA, LANDING,ESC_TELEMETRY,EFI_STATUS, and PID_TUNING // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK_Parameters, streamRates[5], 1), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate // @Description: MAVLink Stream rate of VFR_HUD // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK_Parameters, streamRates[6], 1), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate // @Description: MAVLink Stream rate of AHRS, SYSTEM_TIME, WIND, RANGEFINDER, DISTANCE_SENSOR, TERRAIN_REQUEST, BATTERY2, GIMBAL_DEVICE_ATTITUDE_STATUS, OPTICAL_FLOW, MAG_CAL_REPORT, MAG_CAL_PROGRESS, EKF_STATUS_REPORT, VIBRATION, and BATTERY_STATUS // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK_Parameters, streamRates[7], 1), // @Param: PARAMS // @DisplayName: Parameter stream rate // @Description: MAVLink Stream rate of PARAM_VALUE // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK_Parameters, streamRates[8], 10), // @Param: ADSB // @DisplayName: ADSB stream rate // @Description: MAVLink ADSB stream rate // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("ADSB", 9, GCS_MAVLINK_Parameters, streamRates[9], 5), AP_GROUPEND }; static const ap_message STREAM_RAW_SENSORS_msgs[] = { MSG_RAW_IMU, MSG_SCALED_IMU2, MSG_SCALED_IMU3, MSG_SCALED_PRESSURE, MSG_SCALED_PRESSURE2, MSG_SCALED_PRESSURE3, }; static const ap_message STREAM_EXTENDED_STATUS_msgs[] = { MSG_SYS_STATUS, MSG_POWER_STATUS, #if HAL_WITH_MCU_MONITORING MSG_MCU_STATUS, #endif MSG_MEMINFO, MSG_CURRENT_WAYPOINT, MSG_GPS_RAW, MSG_GPS_RTK, #if GPS_MAX_RECEIVERS > 1 MSG_GPS2_RAW, MSG_GPS2_RTK, #endif MSG_NAV_CONTROLLER_OUTPUT, #if AP_FENCE_ENABLED MSG_FENCE_STATUS, #endif MSG_POSITION_TARGET_GLOBAL_INT, }; static const ap_message STREAM_POSITION_msgs[] = { MSG_LOCATION, MSG_LOCAL_POSITION }; static const ap_message STREAM_RAW_CONTROLLER_msgs[] = { MSG_SERVO_OUT, }; static const ap_message STREAM_RC_CHANNELS_msgs[] = { MSG_SERVO_OUTPUT_RAW, MSG_RC_CHANNELS, MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection }; static const ap_message STREAM_EXTRA1_msgs[] = { MSG_ATTITUDE, #if AP_SIM_ENABLED MSG_SIMSTATE, #endif MSG_AHRS2, #if AP_RPM_ENABLED MSG_RPM, #endif MSG_AOA_SSA, MSG_PID_TUNING, MSG_LANDING, #if HAL_WITH_ESC_TELEM MSG_ESC_TELEMETRY, #endif #if HAL_EFI_ENABLED MSG_EFI_STATUS, #endif #if AP_AIRSPEED_HYGROMETER_ENABLE MSG_HYGROMETER, #endif }; static const ap_message STREAM_EXTRA2_msgs[] = { MSG_VFR_HUD }; static const ap_message STREAM_EXTRA3_msgs[] = { MSG_AHRS, MSG_WIND, #if AP_RANGEFINDER_ENABLED MSG_RANGEFINDER, #endif MSG_DISTANCE_SENSOR, MSG_SYSTEM_TIME, #if AP_TERRAIN_AVAILABLE MSG_TERRAIN, #endif #if AP_BATTERY_ENABLED MSG_BATTERY_STATUS, #endif #if HAL_MOUNT_ENABLED MSG_GIMBAL_DEVICE_ATTITUDE_STATUS, #endif #if AP_OPTICALFLOW_ENABLED MSG_OPTICAL_FLOW, #endif #if COMPASS_CAL_ENABLED MSG_MAG_CAL_REPORT, MSG_MAG_CAL_PROGRESS, #endif MSG_EKF_STATUS_REPORT, MSG_VIBRATION, }; static const ap_message STREAM_PARAMS_msgs[] = { MSG_NEXT_PARAM }; static const ap_message STREAM_ADSB_msgs[] = { MSG_ADSB_VEHICLE, #if AP_AIS_ENABLED MSG_AIS_VESSEL, #endif }; const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = { MAV_STREAM_ENTRY(STREAM_RAW_SENSORS), MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS), MAV_STREAM_ENTRY(STREAM_POSITION), MAV_STREAM_ENTRY(STREAM_RAW_CONTROLLER), MAV_STREAM_ENTRY(STREAM_RC_CHANNELS), MAV_STREAM_ENTRY(STREAM_EXTRA1), MAV_STREAM_ENTRY(STREAM_EXTRA2), MAV_STREAM_ENTRY(STREAM_EXTRA3), MAV_STREAM_ENTRY(STREAM_PARAMS), MAV_STREAM_ENTRY(STREAM_ADSB), MAV_STREAM_TERMINATOR // must have this at end of stream_entries }; /* handle a request to switch to guided mode. This happens via a callback from handle_mission_item() */ bool GCS_MAVLINK_Plane::handle_guided_request(AP_Mission::Mission_Command &cmd) { return plane.control_mode->handle_guided_request(cmd.content.location); } /* handle a request to change current WP altitude. This happens via a callback from handle_mission_item() */ void GCS_MAVLINK_Plane::handle_change_alt_request(AP_Mission::Mission_Command &cmd) { plane.next_WP_loc.alt = cmd.content.location.alt; if (cmd.content.location.relative_alt) { plane.next_WP_loc.alt += plane.home.alt; } plane.next_WP_loc.relative_alt = false; plane.next_WP_loc.terrain_alt = cmd.content.location.terrain_alt; plane.reset_offset_altitude(); } /* handle a LANDING_TARGET command. The timestamp has been jitter corrected */ void GCS_MAVLINK_Plane::handle_landing_target(const mavlink_landing_target_t &packet, uint32_t timestamp_ms) { #if AC_PRECLAND_ENABLED plane.g2.precland.handle_msg(packet, timestamp_ms); #endif } MAV_RESULT GCS_MAVLINK_Plane::handle_command_preflight_calibration(const mavlink_command_int_t &packet, const mavlink_message_t &msg) { plane.in_calibration = true; MAV_RESULT ret = GCS_MAVLINK::handle_command_preflight_calibration(packet, msg); plane.in_calibration = false; return ret; } void GCS_MAVLINK_Plane::packetReceived(const mavlink_status_t &status, const mavlink_message_t &msg) { #if HAL_ADSB_ENABLED plane.avoidance_adsb.handle_msg(msg); #endif #if AP_SCRIPTING_ENABLED && AP_FOLLOW_ENABLED // pass message to follow library plane.g2.follow.handle_msg(msg); #endif GCS_MAVLINK::packetReceived(status, msg); } bool Plane::set_home_to_current_location(bool _lock) { if (!set_home_persistently(AP::gps().location())) { return false; } if (_lock) { AP::ahrs().lock_home(); } if ((control_mode == &mode_rtl) #if HAL_QUADPLANE_ENABLED || (control_mode == &mode_qrtl) #endif ) { // if in RTL head to the updated home location control_mode->enter(); } return true; } bool Plane::set_home(const Location& loc, bool _lock) { if (!AP::ahrs().set_home(loc)) { return false; } if (_lock) { AP::ahrs().lock_home(); } if ((control_mode == &mode_rtl) #if HAL_QUADPLANE_ENABLED || (control_mode == &mode_qrtl) #endif ) { // if in RTL head to the updated home location control_mode->enter(); } return true; } MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_do_reposition(const mavlink_command_int_t &packet) { // sanity check location if (!check_latlng(packet.x, packet.y)) { return MAV_RESULT_DENIED; } Location requested_position; if (!location_from_command_t(packet, requested_position)) { return MAV_RESULT_DENIED; } if (isnan(packet.param4) || is_zero(packet.param4)) { requested_position.loiter_ccw = 0; } else { requested_position.loiter_ccw = 1; } if (requested_position.sanitize(plane.current_loc)) { // if the location wasn't already sane don't load it return MAV_RESULT_DENIED; } // location is valid load and set if (((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) || (plane.control_mode == &plane.mode_guided)) { plane.set_mode(plane.mode_guided, ModeReason::GCS_COMMAND); // add home alt if needed if (requested_position.relative_alt) { requested_position.alt += plane.home.alt; requested_position.relative_alt = 0; } plane.set_guided_WP(requested_position); // Loiter radius for planes. Positive radius in meters, direction is controlled by Yaw (param4) value, parsed above if (!isnan(packet.param3) && packet.param3 > 0) { plane.mode_guided.set_radius_and_direction(packet.param3, requested_position.loiter_ccw); } return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } // these are GUIDED mode commands that are RATE or slew enabled, so you can have more powerful control than default controls. MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_guided_slew_commands(const mavlink_command_int_t &packet) { switch(packet.command) { #if OFFBOARD_GUIDED == ENABLED case MAV_CMD_GUIDED_CHANGE_SPEED: { // command is only valid in guided mode if (plane.control_mode != &plane.mode_guided) { return MAV_RESULT_FAILED; } // only airspeed commands are supported right now... if (int(packet.param1) != SPEED_TYPE_AIRSPEED) { // since SPEED_TYPE is int in range 0-1 and packet.param1 is a *float* this works. return MAV_RESULT_DENIED; } // reject airspeeds that are outside of the tuning envelope if (packet.param2 > plane.aparm.airspeed_max || packet.param2 < plane.aparm.airspeed_min) { return MAV_RESULT_DENIED; } // no need to process any new packet/s with the // same airspeed any further, if we are already doing it. float new_target_airspeed_cm = packet.param2 * 100; if ( is_equal(new_target_airspeed_cm,plane.guided_state.target_airspeed_cm)) { return MAV_RESULT_ACCEPTED; } plane.guided_state.target_airspeed_cm = new_target_airspeed_cm; plane.guided_state.target_airspeed_time_ms = AP_HAL::millis(); if (is_zero(packet.param3)) { // the user wanted /maximum acceleration, pick a large value as close enough plane.guided_state.target_airspeed_accel = 1000.0f; } else { plane.guided_state.target_airspeed_accel = fabsf(packet.param3); } // assign an acceleration direction if (plane.guided_state.target_airspeed_cm < plane.target_airspeed_cm) { plane.guided_state.target_airspeed_accel *= -1.0f; } return MAV_RESULT_ACCEPTED; } case MAV_CMD_GUIDED_CHANGE_ALTITUDE: { // command is only valid in guided if (plane.control_mode != &plane.mode_guided) { return MAV_RESULT_FAILED; } // disallow default value of -1 and dangerous value of zero if (is_equal(packet.z, -1.0f) || is_equal(packet.z, 0.0f)){ return MAV_RESULT_DENIED; } // the requested alt data might be relative or absolute float new_target_alt = packet.z * 100; float new_target_alt_rel = packet.z * 100 + plane.home.alt; // only global/relative/terrain frames are supported switch(packet.frame) { case MAV_FRAME_GLOBAL_RELATIVE_ALT: { if (is_equal(plane.guided_state.target_alt,new_target_alt_rel) ) { // compare two floats as near-enough // no need to process any new packet/s with the same ALT any further, if we are already doing it. return MAV_RESULT_ACCEPTED; } plane.guided_state.target_alt = new_target_alt_rel; break; } case MAV_FRAME_GLOBAL: { if (is_equal(plane.guided_state.target_alt,new_target_alt) ) { // compare two floats as near-enough // no need to process any new packet/s with the same ALT any further, if we are already doing it. return MAV_RESULT_ACCEPTED; } plane.guided_state.target_alt = new_target_alt; break; } default: // MAV_RESULT_DENIED means Command is invalid (is supported but has invalid parameters). return MAV_RESULT_DENIED; } plane.guided_state.target_alt_frame = packet.frame; plane.guided_state.last_target_alt = plane.current_loc.alt; // FIXME: Reference frame is not corrected for here plane.guided_state.target_alt_time_ms = AP_HAL::millis(); if (is_zero(packet.param3)) { // the user wanted /maximum acceleration, pick a large value as close enough plane.guided_state.target_alt_accel = 1000.0; } else { plane.guided_state.target_alt_accel = fabsf(packet.param3); } // assign an acceleration direction if (plane.guided_state.target_alt < plane.current_loc.alt) { plane.guided_state.target_alt_accel *= -1.0f; } return MAV_RESULT_ACCEPTED; } case MAV_CMD_GUIDED_CHANGE_HEADING: { // command is only valid in guided mode if (plane.control_mode != &plane.mode_guided) { return MAV_RESULT_FAILED; } // don't accept packets outside of [0-360] degree range if (packet.param2 < 0.0f || packet.param2 >= 360.0f) { return MAV_RESULT_DENIED; } float new_target_heading = radians(wrap_180(packet.param2)); // course over ground if ( int(packet.param1) == HEADING_TYPE_COURSE_OVER_GROUND) { // compare as nearest int plane.guided_state.target_heading_type = GUIDED_HEADING_COG; plane.prev_WP_loc = plane.current_loc; // normal vehicle heading } else if (int(packet.param1) == HEADING_TYPE_HEADING) { // compare as nearest int plane.guided_state.target_heading_type = GUIDED_HEADING_HEADING; } else { // MAV_RESULT_DENIED means Command is invalid (is supported but has invalid parameters). return MAV_RESULT_DENIED; } plane.g2.guidedHeading.reset_I(); plane.guided_state.target_heading = new_target_heading; plane.guided_state.target_heading_accel_limit = MAX(packet.param3, 0.05f); plane.guided_state.target_heading_time_ms = AP_HAL::millis(); return MAV_RESULT_ACCEPTED; } #endif // OFFBOARD_GUIDED == ENABLED } // anything else ... return MAV_RESULT_UNSUPPORTED; } MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_packet(const mavlink_command_int_t &packet, const mavlink_message_t &msg) { switch(packet.command) { case MAV_CMD_DO_AUTOTUNE_ENABLE: return handle_MAV_CMD_DO_AUTOTUNE_ENABLE(packet); case MAV_CMD_DO_REPOSITION: return handle_command_int_do_reposition(packet); // special 'slew-enabled' guided commands here... for speed,alt, and direction commands case MAV_CMD_GUIDED_CHANGE_SPEED: case MAV_CMD_GUIDED_CHANGE_ALTITUDE: case MAV_CMD_GUIDED_CHANGE_HEADING: return handle_command_int_guided_slew_commands(packet); #if AP_SCRIPTING_ENABLED && AP_FOLLOW_ENABLED case MAV_CMD_DO_FOLLOW: // param1: sysid of target to follow if ((packet.param1 > 0) && (packet.param1 <= 255)) { plane.g2.follow.set_target_sysid((uint8_t)packet.param1); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_DENIED; #endif #if AP_ICENGINE_ENABLED case MAV_CMD_DO_ENGINE_CONTROL: if (!plane.g2.ice_control.engine_control(packet.param1, packet.param2, packet.param3, (uint32_t)packet.param4)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; #endif case MAV_CMD_DO_CHANGE_SPEED: return handle_command_DO_CHANGE_SPEED(packet); #if PARACHUTE == ENABLED case MAV_CMD_DO_PARACHUTE: return handle_MAV_CMD_DO_PARACHUTE(packet); #endif #if HAL_QUADPLANE_ENABLED case MAV_CMD_DO_MOTOR_TEST: return handle_MAV_CMD_DO_MOTOR_TEST(packet); case MAV_CMD_DO_VTOL_TRANSITION: return handle_command_DO_VTOL_TRANSITION(packet); case MAV_CMD_NAV_TAKEOFF: return handle_command_MAV_CMD_NAV_TAKEOFF(packet); #endif case MAV_CMD_DO_GO_AROUND: return plane.trigger_land_abort(packet.param1) ? MAV_RESULT_ACCEPTED : MAV_RESULT_FAILED; case MAV_CMD_DO_LAND_START: // attempt to switch to next DO_LAND_START command in the mission if (plane.have_position && plane.mission.jump_to_landing_sequence(plane.current_loc)) { plane.set_mode(plane.mode_auto, ModeReason::GCS_COMMAND); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; case MAV_CMD_MISSION_START: plane.set_mode(plane.mode_auto, ModeReason::GCS_COMMAND); return MAV_RESULT_ACCEPTED; case MAV_CMD_NAV_LOITER_UNLIM: plane.set_mode(plane.mode_loiter, ModeReason::GCS_COMMAND); return MAV_RESULT_ACCEPTED; case MAV_CMD_NAV_RETURN_TO_LAUNCH: plane.set_mode(plane.mode_rtl, ModeReason::GCS_COMMAND); return MAV_RESULT_ACCEPTED; default: return GCS_MAVLINK::handle_command_int_packet(packet, msg); } } MAV_RESULT GCS_MAVLINK_Plane::handle_command_DO_CHANGE_SPEED(const mavlink_command_int_t &packet) { // if we're in failsafe modes (e.g., RTL, LOITER) or in pilot // controlled modes (e.g., MANUAL, TRAINING) // this command should be ignored since it comes in from GCS // or a companion computer: if ((!plane.control_mode->is_guided_mode()) && (plane.control_mode != &plane.mode_auto)) { // failed return MAV_RESULT_FAILED; } if (plane.do_change_speed(packet.param1, packet.param2, packet.param3)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } #if HAL_QUADPLANE_ENABLED #if AP_MAVLINK_COMMAND_LONG_ENABLED void GCS_MAVLINK_Plane::convert_MAV_CMD_NAV_TAKEOFF_to_COMMAND_INT(const mavlink_command_long_t &in, mavlink_command_int_t &out) { // convert to MAV_FRAME_LOCAL_OFFSET_NED, "NED local tangent frame // with origin that travels with the vehicle" out = {}; out.target_system = in.target_system; out.target_component = in.target_component; out.frame = MAV_FRAME_LOCAL_OFFSET_NED; out.command = in.command; // out.current = 0; // out.autocontinue = 0; // out.param1 = in.param1; // we only use the "z" parameter in this command: // out.param2 = in.param2; // out.param3 = in.param3; // out.param4 = in.param4; // out.x = 0; // we don't handle positioning when doing takeoffs // out.y = 0; out.z = -in.param7; // up -> down } void GCS_MAVLINK_Plane::convert_COMMAND_LONG_to_COMMAND_INT(const mavlink_command_long_t &in, mavlink_command_int_t &out, MAV_FRAME frame) { switch (in.command) { case MAV_CMD_NAV_TAKEOFF: convert_MAV_CMD_NAV_TAKEOFF_to_COMMAND_INT(in, out); return; } return GCS_MAVLINK::convert_COMMAND_LONG_to_COMMAND_INT(in, out, frame); } #endif // AP_MAVLINK_COMMAND_LONG_ENABLED MAV_RESULT GCS_MAVLINK_Plane::handle_command_MAV_CMD_NAV_TAKEOFF(const mavlink_command_int_t &packet) { float takeoff_alt = packet.z; switch (packet.frame) { case MAV_FRAME_LOCAL_OFFSET_NED: // "NED local tangent frame with origin that travels with the vehicle" takeoff_alt = -takeoff_alt; // down -> up break; default: return MAV_RESULT_DENIED; // "is supported but has invalid parameters" } if (!plane.quadplane.available()) { return MAV_RESULT_FAILED; } if (!plane.quadplane.do_user_takeoff(takeoff_alt)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } #endif MAV_RESULT GCS_MAVLINK_Plane::handle_MAV_CMD_DO_AUTOTUNE_ENABLE(const mavlink_command_int_t &packet) { // param1 : enable/disable plane.autotune_enable(!is_zero(packet.param1)); return MAV_RESULT_ACCEPTED; } #if PARACHUTE == ENABLED MAV_RESULT GCS_MAVLINK_Plane::handle_MAV_CMD_DO_PARACHUTE(const mavlink_command_int_t &packet) { // configure or release parachute switch ((uint16_t)packet.param1) { case PARACHUTE_DISABLE: plane.parachute.enabled(false); return MAV_RESULT_ACCEPTED; case PARACHUTE_ENABLE: plane.parachute.enabled(true); return MAV_RESULT_ACCEPTED; case PARACHUTE_RELEASE: // treat as a manual release which performs some additional check of altitude if (plane.parachute.released()) { gcs().send_text(MAV_SEVERITY_NOTICE, "Parachute already released"); return MAV_RESULT_FAILED; } if (!plane.parachute.enabled()) { gcs().send_text(MAV_SEVERITY_NOTICE, "Parachute not enabled"); return MAV_RESULT_FAILED; } if (!plane.parachute_manual_release()) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; default: break; } return MAV_RESULT_FAILED; } #endif #if HAL_QUADPLANE_ENABLED MAV_RESULT GCS_MAVLINK_Plane::handle_MAV_CMD_DO_MOTOR_TEST(const mavlink_command_int_t &packet) { // param1 : motor sequence number (a number from 1 to max number of motors on the vehicle) // param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum) // param3 : throttle (range depends upon param2) // param4 : timeout (in seconds) // param5 : motor count (number of motors to test in sequence) return plane.quadplane.mavlink_motor_test_start(chan, (uint8_t)packet.param1, (uint8_t)packet.param2, (uint16_t)packet.param3, packet.param4, (uint8_t)packet.x); } MAV_RESULT GCS_MAVLINK_Plane::handle_command_DO_VTOL_TRANSITION(const mavlink_command_int_t &packet) { if (!plane.quadplane.handle_do_vtol_transition((enum MAV_VTOL_STATE)packet.param1)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } #endif // this is called on receipt of a MANUAL_CONTROL packet and is // expected to call manual_override to override RC input on desired // axes. void GCS_MAVLINK_Plane::handle_manual_control_axes(const mavlink_manual_control_t &packet, const uint32_t tnow) { manual_override(plane.channel_roll, packet.y, 1000, 2000, tnow); manual_override(plane.channel_pitch, packet.x, 1000, 2000, tnow, true); manual_override(plane.channel_throttle, packet.z, 0, 1000, tnow); manual_override(plane.channel_rudder, packet.r, 1000, 2000, tnow); } void GCS_MAVLINK_Plane::handle_message(const mavlink_message_t &msg) { switch (msg.msgid) { case MAVLINK_MSG_ID_TERRAIN_DATA: case MAVLINK_MSG_ID_TERRAIN_CHECK: #if AP_TERRAIN_AVAILABLE plane.terrain.handle_data(chan, msg); #endif break; case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: handle_set_attitude_target(msg); break; case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: handle_set_position_target_local_ned(msg); break; case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: handle_set_position_target_global_int(msg); break; default: GCS_MAVLINK::handle_message(msg); break; } // end switch } // end handle mavlink void GCS_MAVLINK_Plane::handle_set_attitude_target(const mavlink_message_t &msg) { // Only allow companion computer (or other external controller) to // control attitude in GUIDED mode. We DON'T want external control // in e.g., RTL, CICLE. Specifying a single mode for companion // computer control is more safe (even more so when using // FENCE_ACTION = 4 for geofence failures). if (plane.control_mode != &plane.mode_guided) { // don't screw up failsafes return; } mavlink_set_attitude_target_t att_target; mavlink_msg_set_attitude_target_decode(&msg, &att_target); // Mappings: If any of these bits are set, the corresponding input should be ignored. // NOTE, when parsing the bits we invert them for easier interpretation but transport has them inverted // bit 1: body roll rate // bit 2: body pitch rate // bit 3: body yaw rate // bit 4: unknown // bit 5: unknown // bit 6: reserved // bit 7: throttle // bit 8: attitude // if not setting all Quaternion values, use _rate flags to indicate which fields. // Extract the Euler roll angle from the Quaternion. Quaternion q(att_target.q[0], att_target.q[1], att_target.q[2], att_target.q[3]); // NOTE: att_target.type_mask is inverted for easier interpretation att_target.type_mask = att_target.type_mask ^ 0xFF; uint8_t attitude_mask = att_target.type_mask & 0b10000111; // q plus rpy uint32_t now = AP_HAL::millis(); if ((attitude_mask & 0b10000001) || // partial, including roll (attitude_mask == 0b10000000)) { // all angles plane.guided_state.forced_rpy_cd.x = degrees(q.get_euler_roll()) * 100.0f; // Update timer for external roll to the nav control plane.guided_state.last_forced_rpy_ms.x = now; } if ((attitude_mask & 0b10000010) || // partial, including pitch (attitude_mask == 0b10000000)) { // all angles plane.guided_state.forced_rpy_cd.y = degrees(q.get_euler_pitch()) * 100.0f; // Update timer for external pitch to the nav control plane.guided_state.last_forced_rpy_ms.y = now; } if ((attitude_mask & 0b10000100) || // partial, including yaw (attitude_mask == 0b10000000)) { // all angles plane.guided_state.forced_rpy_cd.z = degrees(q.get_euler_yaw()) * 100.0f; // Update timer for external yaw to the nav control plane.guided_state.last_forced_rpy_ms.z = now; } if (att_target.type_mask & 0b01000000) { // throttle plane.guided_state.forced_throttle = att_target.thrust * 100.0f; // Update timer for external throttle plane.guided_state.last_forced_throttle_ms = now; } } void GCS_MAVLINK_Plane::handle_set_position_target_local_ned(const mavlink_message_t &msg) { // decode packet mavlink_set_position_target_local_ned_t packet; mavlink_msg_set_position_target_local_ned_decode(&msg, &packet); // exit if vehicle is not in Guided mode if (plane.control_mode != &plane.mode_guided) { return; } // only local moves for now if (packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED) { return; } // just do altitude for now plane.next_WP_loc.alt += -packet.z*100.0; gcs().send_text(MAV_SEVERITY_INFO, "Change alt to %.1f", (double)((plane.next_WP_loc.alt - plane.home.alt)*0.01)); } void GCS_MAVLINK_Plane::handle_set_position_target_global_int(const mavlink_message_t &msg) { // Only want to allow companion computer position control when // in a certain mode to avoid inadvertently sending these // kinds of commands when the autopilot is responding to problems // in modes such as RTL, CIRCLE, etc. Specifying ONLY one mode // for companion computer control is more safe (provided // one uses the FENCE_ACTION = 4 (RTL) for geofence failures). if (plane.control_mode != &plane.mode_guided) { //don't screw up failsafes return; } mavlink_set_position_target_global_int_t pos_target; mavlink_msg_set_position_target_global_int_decode(&msg, &pos_target); // Unexpectedly, the mask is expecting "ones" for dimensions that should // be IGNORNED rather than INCLUDED. See mavlink documentation of the // SET_POSITION_TARGET_GLOBAL_INT message, type_mask field. const uint16_t alt_mask = 0b1111111111111011; // (z mask at bit 3) bool msg_valid = true; AP_Mission::Mission_Command cmd = {0}; if (pos_target.type_mask & alt_mask) { cmd.content.location.alt = pos_target.alt * 100; cmd.content.location.relative_alt = false; cmd.content.location.terrain_alt = false; switch (pos_target.coordinate_frame) { case MAV_FRAME_GLOBAL: case MAV_FRAME_GLOBAL_INT: break; //default to MSL altitude case MAV_FRAME_GLOBAL_RELATIVE_ALT: case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT: cmd.content.location.relative_alt = true; break; case MAV_FRAME_GLOBAL_TERRAIN_ALT: case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT: cmd.content.location.relative_alt = true; cmd.content.location.terrain_alt = true; break; default: gcs().send_text(MAV_SEVERITY_WARNING, "Invalid coord frame in SET_POSTION_TARGET_GLOBAL_INT"); msg_valid = false; break; } if (msg_valid) { handle_change_alt_request(cmd); } } // end if alt_mask } MAV_RESULT GCS_MAVLINK_Plane::handle_command_do_set_mission_current(const mavlink_command_int_t &packet) { const MAV_RESULT result = GCS_MAVLINK::handle_command_do_set_mission_current(packet); if (result != MAV_RESULT_ACCEPTED) { return result; } // if you change this you must change handle_mission_set_current plane.auto_state.next_wp_crosstrack = false; if (plane.control_mode == &plane.mode_auto && plane.mission.state() == AP_Mission::MISSION_STOPPED) { plane.mission.resume(); } return result; } #if AP_MAVLINK_MISSION_SET_CURRENT_ENABLED void GCS_MAVLINK_Plane::handle_mission_set_current(AP_Mission &mission, const mavlink_message_t &msg) { // if you change this you must change handle_command_do_set_mission_current plane.auto_state.next_wp_crosstrack = false; GCS_MAVLINK::handle_mission_set_current(mission, msg); if (plane.control_mode == &plane.mode_auto && plane.mission.state() == AP_Mission::MISSION_STOPPED) { plane.mission.resume(); } } #endif uint64_t GCS_MAVLINK_Plane::capabilities() const { return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT | MAV_PROTOCOL_CAPABILITY_COMMAND_INT | MAV_PROTOCOL_CAPABILITY_MISSION_INT | MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT | MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET | #if AP_TERRAIN_AVAILABLE (plane.terrain.enabled() ? MAV_PROTOCOL_CAPABILITY_TERRAIN : 0) | #endif GCS_MAVLINK::capabilities()); } #if HAL_HIGH_LATENCY2_ENABLED int16_t GCS_MAVLINK_Plane::high_latency_target_altitude() const { AP_AHRS &ahrs = AP::ahrs(); Location global_position_current; UNUSED_RESULT(ahrs.get_location(global_position_current)); #if HAL_QUADPLANE_ENABLED const QuadPlane &quadplane = plane.quadplane; //return units are m if (quadplane.show_vtol_view()) { return (plane.control_mode != &plane.mode_qstabilize) ? 0.01 * (global_position_current.alt + quadplane.pos_control->get_pos_error_z_cm()) : 0; } #endif return 0.01 * (global_position_current.alt + plane.calc_altitude_error_cm()); } uint8_t GCS_MAVLINK_Plane::high_latency_tgt_heading() const { // return units are deg/2 #if HAL_QUADPLANE_ENABLED const QuadPlane &quadplane = plane.quadplane; if (quadplane.show_vtol_view()) { const Vector3f &targets = quadplane.attitude_control->get_att_target_euler_cd(); return ((uint16_t)(targets.z * 0.01)) / 2; } #endif const AP_Navigation *nav_controller = plane.nav_controller; // need to convert -18000->18000 to 0->360/2 return wrap_360_cd(nav_controller->target_bearing_cd() ) / 200; } // return units are dm uint16_t GCS_MAVLINK_Plane::high_latency_tgt_dist() const { #if HAL_QUADPLANE_ENABLED const QuadPlane &quadplane = plane.quadplane; if (quadplane.show_vtol_view()) { bool wp_nav_valid = quadplane.using_wp_nav(); return (wp_nav_valid ? MIN(quadplane.wp_nav->get_wp_distance_to_destination(), UINT16_MAX) : 0) / 10; } #endif return MIN(plane.auto_state.wp_distance, UINT16_MAX) / 10; } uint8_t GCS_MAVLINK_Plane::high_latency_tgt_airspeed() const { // return units are m/s*5 return plane.target_airspeed_cm * 0.05; } uint8_t GCS_MAVLINK_Plane::high_latency_wind_speed() const { Vector3f wind; wind = AP::ahrs().wind_estimate(); // return units are m/s*5 return MIN(wind.length() * 5, UINT8_MAX); } uint8_t GCS_MAVLINK_Plane::high_latency_wind_direction() const { const Vector3f wind = AP::ahrs().wind_estimate(); // return units are deg/2 // need to convert -180->180 to 0->360/2 return wrap_360(degrees(atan2f(-wind.y, -wind.x))) / 2; } #endif // HAL_HIGH_LATENCY2_ENABLED MAV_VTOL_STATE GCS_MAVLINK_Plane::vtol_state() const { #if !HAL_QUADPLANE_ENABLED return MAV_VTOL_STATE_UNDEFINED; #else if (!plane.quadplane.available()) { return MAV_VTOL_STATE_UNDEFINED; } return plane.quadplane.transition->get_mav_vtol_state(); #endif }; MAV_LANDED_STATE GCS_MAVLINK_Plane::landed_state() const { if (plane.is_flying()) { // note that Q-modes almost always consider themselves as flying return MAV_LANDED_STATE_IN_AIR; } return MAV_LANDED_STATE_ON_GROUND; }