#pragma once #include #include // ArduPilot Mega Vector/Matrix math Library #include #include // rotor controller states enum RotorControlState { ROTOR_CONTROL_STOP = 0, ROTOR_CONTROL_IDLE, ROTOR_CONTROL_ACTIVE }; // rotor control modes enum RotorControlMode { ROTOR_CONTROL_MODE_DISABLED = 0, ROTOR_CONTROL_MODE_SPEED_PASSTHROUGH, ROTOR_CONTROL_MODE_SPEED_SETPOINT, ROTOR_CONTROL_MODE_OPEN_LOOP_POWER_OUTPUT, ROTOR_CONTROL_MODE_CLOSED_LOOP_POWER_OUTPUT }; class AP_MotorsHeli_RSC { public: friend class AP_MotorsHeli_Single; friend class AP_MotorsHeli_Dual; friend class AP_MotorsHeli_Quad; AP_MotorsHeli_RSC(SRV_Channel::Aux_servo_function_t aux_fn, uint8_t default_channel) : _aux_fn(aux_fn), _default_channel(default_channel) {}; // init_servo - servo initialization on start-up void init_servo(); // set_control_mode - sets control mode void set_control_mode(RotorControlMode mode) { _control_mode = mode; } // set_critical_speed void set_critical_speed(float critical_speed) { _critical_speed = critical_speed; } // get_critical_speed float get_critical_speed() const { return _critical_speed; } // set_idle_output float get_idle_output() { return _idle_output; } void set_idle_output(float idle_output) { _idle_output = idle_output; } // get_desired_speed float get_desired_speed() const { return _desired_speed; } // set_desired_speed void set_desired_speed(float desired_speed) { _desired_speed = desired_speed; } // get_control_speed float get_control_output() const { return _control_output; } // get_rotor_speed - return estimated or measured rotor speed float get_rotor_speed() const; // is_runup_complete bool is_runup_complete() const { return _runup_complete; } // set_ramp_time void set_ramp_time(int8_t ramp_time) { _ramp_time = ramp_time; } // set_runup_time void set_runup_time(int8_t runup_time) { _runup_time = runup_time; } // set_throttle_curve void set_throttle_curve(float thrcrv[5], uint16_t slewrate); // set_collective. collective for throttle curve calculation void set_collective(float collective) { _collective_in = collective; } // output - update value to send to ESC/Servo void output(RotorControlState state); private: uint64_t _last_update_us; // channel setup for aux function SRV_Channel::Aux_servo_function_t _aux_fn; uint8_t _default_channel; // internal variables RotorControlMode _control_mode = ROTOR_CONTROL_MODE_DISABLED; // motor control mode, Passthrough or Setpoint float _critical_speed = 0.0f; // rotor speed below which flight is not possible float _idle_output = 0.0f; // motor output idle speed float _desired_speed = 0.0f; // latest desired rotor speed from pilot float _control_output = 0.0f; // latest logic controlled output float _rotor_ramp_output = 0.0f; // scalar used to ramp rotor speed between _rsc_idle_output and full speed (0.0-1.0f) float _rotor_runup_output = 0.0f; // scalar used to store status of rotor run-up time (0.0-1.0f) int8_t _ramp_time = 0; // time in seconds for the output to the main rotor's ESC to reach full speed int8_t _runup_time = 0; // time in seconds for the main rotor to reach full speed. Must be longer than _rsc_ramp_time bool _runup_complete = false; // flag for determining if runup is complete float _thrcrv_poly[4][4]; // spline polynomials for throttle curve interpolation uint16_t _power_slewrate = 0; // slewrate for throttle (percentage per second) float _collective_in; // collective in for throttle curve calculation, range 0-1.0f // update_rotor_ramp - slews rotor output scalar between 0 and 1, outputs float scalar to _rotor_ramp_output void update_rotor_ramp(float rotor_ramp_input, float dt); // update_rotor_runup - function to slew rotor runup scalar, outputs float scalar to _rotor_runup_ouptut void update_rotor_runup(float dt); // write_rsc - outputs pwm onto output rsc channel. servo_out parameter is of the range 0 ~ 1 void write_rsc(float servo_out); // calculate_desired_throttle - uses throttle curve and collective input to determine throttle setting float calculate_desired_throttle(float collective_in); };