#include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include "AP_HAL_SITL.h" #include "Scheduler.h" #include "UARTDriver.h" #include #include using namespace HALSITL; extern const AP_HAL::HAL& hal; AP_HAL::Proc Scheduler::_failsafe = nullptr; volatile bool Scheduler::_timer_suspended = false; volatile bool Scheduler::_timer_event_missed = false; AP_HAL::MemberProc Scheduler::_timer_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {nullptr}; uint8_t Scheduler::_num_timer_procs = 0; bool Scheduler::_in_timer_proc = false; AP_HAL::MemberProc Scheduler::_io_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {nullptr}; uint8_t Scheduler::_num_io_procs = 0; bool Scheduler::_in_io_proc = false; bool Scheduler::_should_reboot = false; Scheduler::Scheduler(SITL_State *sitlState) : _sitlState(sitlState), _stopped_clock_usec(0) { } void Scheduler::init() { } void Scheduler::delay_microseconds(uint16_t usec) { uint64_t start = AP_HAL::micros64(); do { uint64_t dtime = AP_HAL::micros64() - start; if (dtime >= usec) { break; } _sitlState->wait_clock(start + usec); } while (true); } void Scheduler::delay(uint16_t ms) { while (ms > 0) { delay_microseconds(1000); ms--; if (_min_delay_cb_ms <= ms) { call_delay_cb(); } } } void Scheduler::register_timer_process(AP_HAL::MemberProc proc) { for (uint8_t i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i] == proc) { return; } } if (_num_timer_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) { _timer_proc[_num_timer_procs] = proc; _num_timer_procs++; } } void Scheduler::register_io_process(AP_HAL::MemberProc proc) { for (uint8_t i = 0; i < _num_io_procs; i++) { if (_io_proc[i] == proc) { return; } } if (_num_io_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) { _io_proc[_num_io_procs] = proc; _num_io_procs++; } } void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us) { _failsafe = failsafe; } void Scheduler::suspend_timer_procs() { _timer_suspended = true; } void Scheduler::resume_timer_procs() { _timer_suspended = false; if (_timer_event_missed) { _timer_event_missed = false; _run_timer_procs(false); } } void Scheduler::system_initialized() { if (_initialized) { AP_HAL::panic( "PANIC: scheduler system initialized called more than once"); } int exceptions = FE_OVERFLOW | FE_DIVBYZERO; #ifndef __i386__ // i386 with gcc doesn't work with FE_INVALID exceptions |= FE_INVALID; #endif if (_sitlState->_sitl == nullptr || _sitlState->_sitl->float_exception) { feenableexcept(exceptions); } else { feclearexcept(exceptions); } _initialized = true; } void Scheduler::sitl_end_atomic() { if (_nested_atomic_ctr == 0) { hal.uartA->printf("NESTED ATOMIC ERROR\n"); } else { _nested_atomic_ctr--; } } void Scheduler::reboot(bool hold_in_bootloader) { _should_reboot = true; } void Scheduler::_run_timer_procs(bool called_from_isr) { if (_in_timer_proc) { // the timer calls took longer than the period of the // timer. This is bad, and may indicate a serious // driver failure. We can't just call the drivers // again, as we could run out of stack. So we only // call the _failsafe call. It's job is to detect if // the drivers or the main loop are indeed dead and to // activate whatever failsafe it thinks may help if // need be. We assume the failsafe code can't // block. If it does then we will recurse and die when // we run out of stack if (_failsafe != nullptr) { _failsafe(); } return; } _in_timer_proc = true; if (!_timer_suspended) { // now call the timer based drivers for (int i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i]) { _timer_proc[i](); } } } else if (called_from_isr) { _timer_event_missed = true; } // and the failsafe, if one is setup if (_failsafe != nullptr) { _failsafe(); } _in_timer_proc = false; } void Scheduler::_run_io_procs(bool called_from_isr) { if (_in_io_proc) { return; } _in_io_proc = true; if (!_timer_suspended) { // now call the IO based drivers for (int i = 0; i < _num_io_procs; i++) { if (_io_proc[i]) { _io_proc[i](); } } } else if (called_from_isr) { _timer_event_missed = true; } _in_io_proc = false; hal.uartA->_timer_tick(); hal.uartB->_timer_tick(); hal.uartC->_timer_tick(); hal.uartD->_timer_tick(); hal.uartE->_timer_tick(); hal.uartF->_timer_tick(); } /* set simulation timestamp */ void Scheduler::stop_clock(uint64_t time_usec) { _stopped_clock_usec = time_usec; if (time_usec - _last_io_run > 10000) { _last_io_run = time_usec; _run_io_procs(false); } } #endif