/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . -- Coded by Victor Mayoral Vilches -- */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX #include "AP_InertialSensor_MPU9250.h" #include #include extern const AP_HAL::HAL& hal; // MPU9250 accelerometer scaling for 16g range #define MPU9250_ACCEL_SCALE_1G (GRAVITY_MSS / 2048.0f) #define MPUREG_XG_OFFS_TC 0x00 #define MPUREG_YG_OFFS_TC 0x01 #define MPUREG_ZG_OFFS_TC 0x02 #define MPUREG_X_FINE_GAIN 0x03 #define MPUREG_Y_FINE_GAIN 0x04 #define MPUREG_Z_FINE_GAIN 0x05 // MPU9250 registers #define MPUREG_XA_OFFS_H 0x77 // X axis accelerometer offset (high byte) #define MPUREG_XA_OFFS_L 0x78 // X axis accelerometer offset (low byte) #define MPUREG_YA_OFFS_H 0x7A // Y axis accelerometer offset (high byte) #define MPUREG_YA_OFFS_L 0x0B // Y axis accelerometer offset (low byte) #define MPUREG_ZA_OFFS_H 0x0D // Z axis accelerometer offset (high byte) #define MPUREG_ZA_OFFS_L 0x0E // Z axis accelerometer offset (low byte) // MPU6000 & MPU9250 registers // not sure if present in MPU9250 // #define MPUREG_PRODUCT_ID 0x0C // Product ID Register #define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte) #define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte) #define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte) #define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte) #define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte) #define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte) #define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(+1) = 200Hz # define MPUREG_SMPLRT_1000HZ 0x00 # define MPUREG_SMPLRT_500HZ 0x01 # define MPUREG_SMPLRT_250HZ 0x03 # define MPUREG_SMPLRT_200HZ 0x04 # define MPUREG_SMPLRT_100HZ 0x09 # define MPUREG_SMPLRT_50HZ 0x13 #define MPUREG_CONFIG 0x1A #define MPUREG_GYRO_CONFIG 0x1B // bit definitions for MPUREG_GYRO_CONFIG # define BITS_GYRO_FS_250DPS 0x00 # define BITS_GYRO_FS_500DPS 0x08 # define BITS_GYRO_FS_1000DPS 0x10 # define BITS_GYRO_FS_2000DPS 0x18 # define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits # define BITS_GYRO_ZGYRO_SELFTEST 0x20 # define BITS_GYRO_YGYRO_SELFTEST 0x40 # define BITS_GYRO_XGYRO_SELFTEST 0x80 #define MPUREG_ACCEL_CONFIG 0x1C #define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this #define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms #define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation. #define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms. #define MPUREG_FIFO_EN 0x23 #define MPUREG_INT_PIN_CFG 0x37 # define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs # define BIT_LATCH_INT_EN 0x20 // latch data ready pin # define BIT_BYPASS_EN 0x02 // connect auxiliary I2C bus to the main I2C bus #define MPUREG_INT_ENABLE 0x38 // bit definitions for MPUREG_INT_ENABLE # define BIT_RAW_RDY_EN 0x01 # define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems # define BIT_UNKNOWN_INT_EN 0x04 # define BIT_I2C_MST_INT_EN 0x08 # define BIT_FIFO_OFLOW_EN 0x10 # define BIT_ZMOT_EN 0x20 # define BIT_MOT_EN 0x40 # define BIT_FF_EN 0x80 #define MPUREG_INT_STATUS 0x3A // bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired) # define BIT_RAW_RDY_INT 0x01 # define BIT_DMP_INT 0x02 # define BIT_UNKNOWN_INT 0x04 # define BIT_I2C_MST_INT 0x08 # define BIT_FIFO_OFLOW_INT 0x10 # define BIT_ZMOT_INT 0x20 # define BIT_MOT_INT 0x40 # define BIT_FF_INT 0x80 #define MPUREG_ACCEL_XOUT_H 0x3B #define MPUREG_ACCEL_XOUT_L 0x3C #define MPUREG_ACCEL_YOUT_H 0x3D #define MPUREG_ACCEL_YOUT_L 0x3E #define MPUREG_ACCEL_ZOUT_H 0x3F #define MPUREG_ACCEL_ZOUT_L 0x40 #define MPUREG_TEMP_OUT_H 0x41 #define MPUREG_TEMP_OUT_L 0x42 #define MPUREG_GYRO_XOUT_H 0x43 #define MPUREG_GYRO_XOUT_L 0x44 #define MPUREG_GYRO_YOUT_H 0x45 #define MPUREG_GYRO_YOUT_L 0x46 #define MPUREG_GYRO_ZOUT_H 0x47 #define MPUREG_GYRO_ZOUT_L 0x48 #define MPUREG_USER_CTRL 0x6A // bit definitions for MPUREG_USER_CTRL # define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp) # define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set) # define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer # define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP # define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface # define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors # define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations # define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations #define MPUREG_PWR_MGMT_1 0x6B # define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator # define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference # define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference # define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset # define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor # define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL # define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode # define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device #define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode #define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers) #define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory) #define MPUREG_MEM_R_W 0x6F // DMP related register #define MPUREG_DMP_CFG_1 0x70 // DMP related register #define MPUREG_DMP_CFG_2 0x71 // DMP related register #define MPUREG_FIFO_COUNTH 0x72 #define MPUREG_FIFO_COUNTL 0x73 #define MPUREG_FIFO_R_W 0x74 #define MPUREG_WHOAMI 0x75 #define MPUREG_WHOAMI_MPU9250 0x71 #define MPUREG_WHOAMI_MPU9255 0x73 /* bit definitions for MPUREG_MST_CTRL */ #define MPUREG_I2C_MST_CTRL 0x24 # define I2C_MST_P_NSR 0x10 # define I2C_SLV0_EN 0x80 # define I2C_MST_CLOCK_400KHZ 0x0D # define I2C_MST_CLOCK_258KHZ 0x08 #define MPUREG_I2C_SLV4_CTRL 0x34 #define MPUREG_I2C_MST_DELAY_CTRL 0x67 # define I2C_SLV0_DLY_EN 0x01 # define I2C_SLV1_DLY_EN 0x02 # define I2C_SLV2_DLY_EN 0x04 # define I2C_SLV3_DLY_EN 0x08 #define READ_FLAG 0x80 #define MPUREG_I2C_SLV0_ADDR 0x25 #define MPUREG_EXT_SENS_DATA_00 0x49 #define MPUREG_I2C_SLV0_DO 0x63 // Configuration bits MPU 3000, MPU 6000 and MPU9250 #define BITS_DLPF_CFG_256HZ_NOLPF2 0x00 #define BITS_DLPF_CFG_188HZ 0x01 #define BITS_DLPF_CFG_98HZ 0x02 #define BITS_DLPF_CFG_42HZ 0x03 #define BITS_DLPF_CFG_20HZ 0x04 #define BITS_DLPF_CFG_10HZ 0x05 #define BITS_DLPF_CFG_5HZ 0x06 #define BITS_DLPF_CFG_2100HZ_NOLPF 0x07 #define BITS_DLPF_CFG_MASK 0x07 #define DEFAULT_SMPLRT_DIV MPUREG_SMPLRT_1000HZ #define DEFAULT_SAMPLE_RATE (1000 / (DEFAULT_SMPLRT_DIV + 1)) /* * PS-MPU-9250A-00.pdf, page 8, lists LSB sensitivity of * gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3) */ #define GYRO_SCALE (0.0174532f / 16.4f) /* * PS-MPU-9250A-00.pdf, page 9, lists LSB sensitivity of * accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2) * * See note below about accel scaling of engineering sample MPUXk * variants however */ /* * 2 bytes for each in this order: ACC_X, ACC_Y, ACC_Z, TEMP, GYRO_X, GYRO_Y * and GYRO_Z */ #define MPU9250_SAMPLE_SIZE 14 /* SPI bus driver implementation */ AP_MPU9250_BusDriver_SPI::AP_MPU9250_BusDriver_SPI(AP_HAL::SPIDeviceDriver *spi) { _spi = spi; } void AP_MPU9250_BusDriver_SPI::init() { // disable I2C as recommended by the datasheet write8(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS); } void AP_MPU9250_BusDriver_SPI::read8(uint8_t reg, uint8_t *val) { uint8_t addr = reg | 0x80; // Set most significant bit uint8_t tx[2]; uint8_t rx[2]; tx[0] = addr; tx[1] = 0; _spi->transaction(tx, rx, 2); *val = rx[1]; } void AP_MPU9250_BusDriver_SPI::read_block(uint8_t reg, uint8_t *val, uint8_t count) { assert(count < 32); uint8_t addr = reg | 0x80; // Set most significant bit uint8_t tx[32] = { addr, }; uint8_t rx[32]; _spi->transaction(tx, rx, count + 1); memcpy(val, rx + 1, count); } void AP_MPU9250_BusDriver_SPI::write8(uint8_t reg, uint8_t val) { uint8_t tx[2]; uint8_t rx[2]; tx[0] = reg; tx[1] = val; _spi->transaction(tx, rx, 2); } void AP_MPU9250_BusDriver_SPI::set_bus_speed(AP_HAL::SPIDeviceDriver::bus_speed speed) { _spi->set_bus_speed(speed); } bool AP_MPU9250_BusDriver_SPI::read_data_transaction(uint8_t *samples, uint8_t &n_samples) { /* one register address followed by seven 2-byte registers */ struct PACKED { uint8_t cmd; uint8_t int_status; uint8_t v[MPU9250_SAMPLE_SIZE]; } rx, tx = { cmd : MPUREG_INT_STATUS | 0x80, }; _spi->transaction((const uint8_t *)&tx, (uint8_t *)&rx, sizeof(rx)); if (!(rx.int_status & BIT_RAW_RDY_INT)) { n_samples = 0; #if MPU9250_DEBUG hal.console->printf("MPU9250: No sample available.\n"); #endif return false; } n_samples = 1; memcpy(&samples[0], &rx.v[0], MPU9250_SAMPLE_SIZE); return true; } AP_HAL::Semaphore* AP_MPU9250_BusDriver_SPI::get_semaphore() { return _spi->get_semaphore(); } bool AP_MPU9250_BusDriver_SPI::has_auxiliary_bus() { return true; } /* I2C bus driver implementation */ AP_MPU9250_BusDriver_I2C::AP_MPU9250_BusDriver_I2C(AP_HAL::I2CDriver *i2c, uint8_t addr) : _addr(addr) , _i2c(i2c) { } void AP_MPU9250_BusDriver_I2C::init() { uint8_t value; read8(MPUREG_INT_PIN_CFG, &value); // enable I2C bypass, connecting auxiliary I2C bus to the main one value |= BIT_BYPASS_EN; write8(MPUREG_INT_PIN_CFG, value); } void AP_MPU9250_BusDriver_I2C::read8(uint8_t reg, uint8_t *val) { _i2c->readRegister(_addr, reg, val); } void AP_MPU9250_BusDriver_I2C::read_block(uint8_t reg, uint8_t *val, uint8_t count) { _i2c->readRegisters(_addr, reg, count, val); } void AP_MPU9250_BusDriver_I2C::write8(uint8_t reg, uint8_t val) { _i2c->writeRegister(_addr, reg, val); } bool AP_MPU9250_BusDriver_I2C::read_data_transaction(uint8_t *samples, uint8_t &n_samples) { uint8_t ret = 0; struct PACKED { uint8_t int_status; uint8_t v[MPU9250_SAMPLE_SIZE]; } buffer; ret = _i2c->readRegisters(_addr, MPUREG_INT_STATUS, sizeof(buffer), (uint8_t *)&buffer); if (ret != 0) { hal.console->printf("MPU9250: error in I2C read\n"); n_samples = 0; return false; } if (!(buffer.int_status & BIT_RAW_RDY_INT)) { #if MPU9250_DEBUG hal.console->printf("MPU9250: No sample available.\n"); #endif n_samples = 0; return false; } memcpy(samples, buffer.v, MPU9250_SAMPLE_SIZE); n_samples = 1; return true; } AP_HAL::Semaphore* AP_MPU9250_BusDriver_I2C::get_semaphore() { return _i2c->get_semaphore(); } bool AP_MPU9250_BusDriver_I2C::has_auxiliary_bus() { return false; } AP_InertialSensor_MPU9250::AP_InertialSensor_MPU9250(AP_InertialSensor &imu, AP_MPU9250_BusDriver *bus) : AP_InertialSensor_Backend(imu), _bus(bus), #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF _default_rotation(ROTATION_ROLL_180_YAW_270) #elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO /* no rotation needed */ _default_rotation(ROTATION_NONE) #elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2 || \ CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXFMINI _default_rotation(ROTATION_YAW_270) #elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BBBMINI _default_rotation(ROTATION_NONE) #elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH _default_rotation(ROTATION_NONE) #else /* rotate for bbone default (and other boards) */ _default_rotation(ROTATION_ROLL_180_YAW_90) #endif { } /* detect the sensor */ AP_InertialSensor_Backend *AP_InertialSensor_MPU9250::detect(AP_InertialSensor &_imu, AP_HAL::SPIDeviceDriver *spi) { AP_MPU9250_BusDriver *bus = new AP_MPU9250_BusDriver_SPI(spi); if (!bus) return NULL; return _detect(_imu, bus, HAL_INS_MPU9250); } AP_InertialSensor_Backend *AP_InertialSensor_MPU9250::detect_i2c(AP_InertialSensor &_imu, AP_HAL::I2CDriver *i2c, uint8_t addr) { AP_MPU9250_BusDriver *bus = new AP_MPU9250_BusDriver_I2C(i2c, addr); if (!bus) return nullptr; return _detect(_imu, bus, HAL_INS_MPU9250); } /* Common detection method - it takes ownership of the bus, freeing it if it's * not possible to return an AP_InertialSensor_Backend */ AP_InertialSensor_Backend *AP_InertialSensor_MPU9250::_detect(AP_InertialSensor &_imu, AP_MPU9250_BusDriver *bus, int16_t id) { AP_InertialSensor_MPU9250 *sensor = new AP_InertialSensor_MPU9250(_imu, bus); if (sensor == NULL) { delete bus; return NULL; } if (!sensor->_init_sensor()) { delete sensor; delete bus; return NULL; } sensor->_id = id; return sensor; } /* initialise the sensor */ bool AP_InertialSensor_MPU9250::_init_sensor() { _bus_sem = _bus->get_semaphore(); if (!_hardware_init()) return false; _gyro_instance = _imu.register_gyro(DEFAULT_SAMPLE_RATE); _accel_instance = _imu.register_accel(DEFAULT_SAMPLE_RATE); _product_id = AP_PRODUCT_ID_MPU9250; // start the timer process to read samples hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_InertialSensor_MPU9250::_poll_data, void)); #if MPU9250_DEBUG _dump_registers(); #endif return true; } /* update the accel and gyro vectors */ bool AP_InertialSensor_MPU9250::update( void ) { update_gyro(_gyro_instance); update_accel(_accel_instance); return true; } /*================ HARDWARE FUNCTIONS ==================== */ /** * Timer process to poll for new data from the MPU9250. */ void AP_InertialSensor_MPU9250::_poll_data(void) { if (!_bus_sem->take_nonblocking()) { /* the semaphore being busy is an expected condition when the mainline code is calling wait_for_sample() which will grab the semaphore. We return now and rely on the mainline code grabbing the latest sample. */ return; } _read_data_transaction(); _bus_sem->give(); } /* read from the data registers and update filtered data */ void AP_InertialSensor_MPU9250::_read_data_transaction() { uint8_t n_samples; uint8_t rx[MPU9250_SAMPLE_SIZE]; Vector3f accel, gyro; if (!_bus->read_data_transaction(rx, n_samples)) { return; } #define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])) accel = Vector3f(int16_val(rx, 1), int16_val(rx, 0), -int16_val(rx, 2)); accel *= MPU9250_ACCEL_SCALE_1G; accel.rotate(_default_rotation); _rotate_and_correct_accel(_accel_instance, accel); _notify_new_accel_raw_sample(_accel_instance, accel); gyro = Vector3f(int16_val(rx, 5), int16_val(rx, 4), -int16_val(rx, 6)); gyro *= GYRO_SCALE; gyro.rotate(_default_rotation); _rotate_and_correct_gyro(_gyro_instance, gyro); _notify_new_gyro_raw_sample(_gyro_instance, gyro); } /* read an 8 bit register */ uint8_t AP_InertialSensor_MPU9250::_register_read(uint8_t reg) { uint8_t val; _bus->read8(reg, &val); return val; } /* write an 8 bit register */ void AP_InertialSensor_MPU9250::_register_write(uint8_t reg, uint8_t val) { _bus->write8(reg, val); } /* initialise the sensor configuration registers */ bool AP_InertialSensor_MPU9250::_hardware_init(void) { // we need to suspend timers to prevent other SPI drivers grabbing // the bus while we do the long initialisation hal.scheduler->suspend_timer_procs(); if (!_bus_sem->take(100)) { hal.console->printf("MPU9250: Unable to get semaphore"); return false; } // initially run the bus at low speed _bus->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); uint8_t value = _register_read(MPUREG_WHOAMI); if (value != MPUREG_WHOAMI_MPU9250 && value != MPUREG_WHOAMI_MPU9255) { hal.console->printf("MPU9250: unexpected WHOAMI 0x%x\n", (unsigned)value); goto fail_whoami; } // Chip reset uint8_t tries; for (tries = 0; tries < 5; tries++) { uint8_t user_ctrl = _register_read(MPUREG_USER_CTRL); /* First disable the master I2C to avoid hanging the slaves on the * auxiliary I2C bus */ if (user_ctrl & BIT_USER_CTRL_I2C_MST_EN) { _register_write(MPUREG_USER_CTRL, user_ctrl & ~BIT_USER_CTRL_I2C_MST_EN); hal.scheduler->delay(10); } // reset device _register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET); hal.scheduler->delay(100); // bus-dependent initialization _bus->init(); // Wake up device and select GyroZ clock. Note that the // MPU9250 starts up in sleep mode, and it can take some time // for it to come out of sleep _register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO); hal.scheduler->delay(5); // check it has woken up if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) { break; } hal.scheduler->delay(10); uint8_t status = _register_read(MPUREG_INT_STATUS); if ((status & BIT_RAW_RDY_INT) != 0) { break; } #if MPU9250_DEBUG _dump_registers(); #endif } if (tries == 5) { hal.console->println("Failed to boot MPU9250 5 times"); goto fail_tries; } _register_write(MPUREG_PWR_MGMT_2, 0x00); // only used for wake-up in accelerometer only low power mode // used no filter of 256Hz on the sensor, then filter using // the 2-pole software filter _register_write(MPUREG_CONFIG, BITS_DLPF_CFG_256HZ_NOLPF2); // set sample rate to 1kHz, and use the 2 pole filter to give the // desired rate _register_write(MPUREG_SMPLRT_DIV, DEFAULT_SMPLRT_DIV); _register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS); // Gyro scale 2000ยบ/s // RM-MPU-9250A-00.pdf, pg. 15, select accel full scale 16g _register_write(MPUREG_ACCEL_CONFIG,3<<3); // configure interrupt to fire when new data arrives _register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN); // clear interrupt on any read, and hold the data ready pin high // until we clear the interrupt value = _register_read(MPUREG_INT_PIN_CFG); value |= BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN; _register_write(MPUREG_INT_PIN_CFG, value); // now that we have initialized, we set the SPI bus speed to high _bus->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); _bus_sem->give(); hal.scheduler->resume_timer_procs(); return true; fail_tries: fail_whoami: _bus_sem->give(); hal.scheduler->resume_timer_procs(); _bus->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); return false; } AuxiliaryBus *AP_InertialSensor_MPU9250::get_auxiliary_bus() { if (_auxiliar_bus) return _auxiliar_bus; if (_bus->has_auxiliary_bus()) _auxiliar_bus = new AP_MPU9250_AuxiliaryBus(*this); return _auxiliar_bus; } #if MPU9250_DEBUG // dump all config registers - used for debug void AP_InertialSensor_MPU9250::_dump_registers(AP_MPU9250_BusDriver *bus) { hal.console->println("MPU9250 registers"); for (uint8_t reg=0; reg<=126; reg++) { uint8_t v = _register_read(bus, reg); hal.console->printf("%02x:%02x ", (unsigned)reg, (unsigned)v); if ((reg - (MPUREG_PRODUCT_ID-1)) % 16 == 0) { hal.console->println(); } } hal.console->println(); } #endif AP_MPU9250_AuxiliaryBus::AP_MPU9250_AuxiliaryBus(AP_InertialSensor_MPU9250 &backend) : AuxiliaryBus(backend, 4) { } AP_HAL::Semaphore *AP_MPU9250_AuxiliaryBus::get_semaphore() { return AP_InertialSensor_MPU9250::from(_ins_backend)._bus_sem; } AuxiliaryBusSlave *AP_MPU9250_AuxiliaryBus::_instantiate_slave(uint8_t addr, uint8_t instance) { /* Enable slaves on MPU9250 if this is the first time */ if (_ext_sens_data == 0) _configure_slaves(); return new AP_MPU9250_AuxiliaryBusSlave(*this, addr, instance); } void AP_MPU9250_AuxiliaryBus::_configure_slaves() { AP_InertialSensor_MPU9250 &backend = AP_InertialSensor_MPU9250::from(_ins_backend); /* Enable the I2C master to slaves on the auxiliary I2C bus*/ uint8_t user_ctrl = backend._register_read(MPUREG_USER_CTRL); backend._register_write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_I2C_MST_EN); /* stop condition between reads; clock at 400kHz */ backend._register_write(MPUREG_I2C_MST_CTRL, I2C_MST_CLOCK_400KHZ | I2C_MST_P_NSR); /* Hard-code divider for internal sample rate, 1 kHz, resulting in a * sample rate of 100Hz */ backend._register_write(MPUREG_I2C_SLV4_CTRL, 9); /* All slaves are subject to the sample rate */ backend._register_write(MPUREG_I2C_MST_DELAY_CTRL, I2C_SLV0_DLY_EN | I2C_SLV1_DLY_EN | I2C_SLV2_DLY_EN | I2C_SLV3_DLY_EN); } int AP_MPU9250_AuxiliaryBus::_configure_periodic_read(AuxiliaryBusSlave *slave, uint8_t reg, uint8_t size) { if (_ext_sens_data + size > MAX_EXT_SENS_DATA) return -1; AP_MPU9250_AuxiliaryBusSlave *mpu_slave = static_cast(slave); mpu_slave->_set_passthrough(reg, size); mpu_slave->_ext_sens_data = _ext_sens_data; _ext_sens_data += size; return 0; } AP_MPU9250_AuxiliaryBusSlave::AP_MPU9250_AuxiliaryBusSlave(AuxiliaryBus &bus, uint8_t addr, uint8_t instance) : AuxiliaryBusSlave(bus, addr, instance) , _mpu9250_addr(MPUREG_I2C_SLV0_ADDR + _instance * 3) , _mpu9250_reg(_mpu9250_addr + 1) , _mpu9250_ctrl(_mpu9250_addr + 2) , _mpu9250_do(MPUREG_I2C_SLV0_DO + _instance) { } int AP_MPU9250_AuxiliaryBusSlave::_set_passthrough(uint8_t reg, uint8_t size, uint8_t *out) { AP_InertialSensor_MPU9250 &backend = AP_InertialSensor_MPU9250::from(_bus.get_backend()); uint8_t addr; /* Ensure the slave read/write is disabled before changing the registers */ backend._register_write(_mpu9250_ctrl, 0); if (out) { backend._register_write(_mpu9250_do, *out); addr = _addr; } else { addr = _addr | READ_FLAG; } backend._register_write(_mpu9250_addr, addr); backend._register_write(_mpu9250_reg, reg); backend._register_write(_mpu9250_ctrl, I2C_SLV0_EN | size); return 0; } int AP_MPU9250_AuxiliaryBusSlave::passthrough_read(uint8_t reg, uint8_t *buf, uint8_t size) { assert(buf); if (_registered) { hal.console->println("Error: can't passthrough when slave is already configured"); return -1; } int r = _set_passthrough(reg, size); if (r < 0) return r; /* wait the value to be read from the slave and read it back */ hal.scheduler->delay(10); AP_InertialSensor_MPU9250 &backend = AP_InertialSensor_MPU9250::from(_bus.get_backend()); backend._bus->read_block(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, size); /* disable new reads */ backend._register_write(_mpu9250_ctrl, 0); return size; } int AP_MPU9250_AuxiliaryBusSlave::passthrough_write(uint8_t reg, uint8_t val) { if (_registered) { hal.console->println("Error: can't passthrough when slave is already configured"); return -1; } int r = _set_passthrough(reg, 1, &val); if (r < 0) return r; /* wait the value to be written to the slave */ hal.scheduler->delay(10); AP_InertialSensor_MPU9250 &backend = AP_InertialSensor_MPU9250::from(_bus.get_backend()); /* disable new writes */ backend._register_write(_mpu9250_ctrl, 0); return 0; } int AP_MPU9250_AuxiliaryBusSlave::read(uint8_t *buf) { if (!_registered) { hal.console->println("Error: can't read before configuring slave"); return -1; } AP_InertialSensor_MPU9250 &backend = AP_InertialSensor_MPU9250::from(_bus.get_backend()); backend._bus->read_block(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, _sample_size); return 0; } #endif // CONFIG_HAL_BOARD