/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* originally written by Jose Julio, Pat Hickey and Jordi Muñoz Heavily modified by Andrew Tridgell */ #include "AP_Baro_MS5611.h" #include extern const AP_HAL::HAL& hal; #define CMD_MS5611_RESET 0x1E #define CMD_MS56XX_PROM 0xA0 #define ADDR_CMD_CONVERT_D1_OSR256 0x40 /* write to this address to start pressure conversion */ #define ADDR_CMD_CONVERT_D1_OSR512 0x42 /* write to this address to start pressure conversion */ #define ADDR_CMD_CONVERT_D1_OSR1024 0x44 /* write to this address to start pressure conversion */ #define ADDR_CMD_CONVERT_D1_OSR2048 0x46 /* write to this address to start pressure conversion */ #define ADDR_CMD_CONVERT_D1_OSR4096 0x48 /* write to this address to start pressure conversion */ #define ADDR_CMD_CONVERT_D2_OSR256 0x50 /* write to this address to start temperature conversion */ #define ADDR_CMD_CONVERT_D2_OSR512 0x52 /* write to this address to start temperature conversion */ #define ADDR_CMD_CONVERT_D2_OSR1024 0x54 /* write to this address to start temperature conversion */ #define ADDR_CMD_CONVERT_D2_OSR2048 0x56 /* write to this address to start temperature conversion */ #define ADDR_CMD_CONVERT_D2_OSR4096 0x58 /* write to this address to start temperature conversion */ /* use an OSR of 1024 to reduce the self-heating effect of the sensor. Information from MS tells us that some individual sensors are quite sensitive to this effect and that reducing the OSR can make a big difference */ #define ADDR_CMD_CONVERT_D1 ADDR_CMD_CONVERT_D1_OSR1024 #define ADDR_CMD_CONVERT_D2 ADDR_CMD_CONVERT_D2_OSR1024 // SPI Device ////////////////////////////////////////////////////////////////// AP_SerialBus_SPI::AP_SerialBus_SPI(enum AP_HAL::SPIDevice device, enum AP_HAL::SPIDeviceDriver::bus_speed speed) : _device(device), _speed(speed), _spi(NULL), _spi_sem(NULL) { } void AP_SerialBus_SPI::init() { _spi = hal.spi->device(_device); if (_spi == NULL) { AP_HAL::panic("did not get valid SPI device driver!"); } _spi_sem = _spi->get_semaphore(); if (_spi_sem == NULL) { AP_HAL::panic("AP_SerialBus_SPI did not get valid SPI semaphroe!"); } _spi->set_bus_speed(_speed); } uint16_t AP_SerialBus_SPI::read_16bits(uint8_t reg) { uint8_t tx[3] = { reg, 0, 0 }; uint8_t rx[3]; _spi->transaction(tx, rx, 3); return ((uint16_t) rx[1] << 8 ) | ( rx[2] ); } uint32_t AP_SerialBus_SPI::read_24bits(uint8_t reg) { uint8_t tx[4] = { reg, 0, 0, 0 }; uint8_t rx[4]; _spi->transaction(tx, rx, 4); return (((uint32_t)rx[1])<<16) | (((uint32_t)rx[2])<<8) | ((uint32_t)rx[3]); } bool AP_SerialBus_SPI::write(uint8_t reg) { uint8_t tx[1] = { reg }; _spi->transaction(tx, NULL, 1); return true; } bool AP_SerialBus_SPI::sem_take_blocking() { return _spi_sem->take(10); } bool AP_SerialBus_SPI::sem_take_nonblocking() { return _spi_sem->take_nonblocking(); } void AP_SerialBus_SPI::sem_give() { _spi_sem->give(); } /// I2C SerialBus AP_SerialBus_I2C::AP_SerialBus_I2C(AP_HAL::I2CDriver *i2c, uint8_t addr) : _i2c(i2c), _addr(addr), _i2c_sem(NULL) { } void AP_SerialBus_I2C::init() { _i2c_sem = _i2c->get_semaphore(); if (_i2c_sem == NULL) { AP_HAL::panic("AP_SerialBus_I2C did not get valid I2C semaphore!"); } } uint16_t AP_SerialBus_I2C::read_16bits(uint8_t reg) { uint8_t buf[2]; if (_i2c->readRegisters(_addr, reg, sizeof(buf), buf) == 0) { return (((uint16_t)(buf[0]) << 8) | buf[1]); } return 0; } uint32_t AP_SerialBus_I2C::read_24bits(uint8_t reg) { uint8_t buf[3]; if (_i2c->readRegisters(_addr, reg, sizeof(buf), buf) == 0) { return (((uint32_t)buf[0]) << 16) | (((uint32_t)buf[1]) << 8) | buf[2]; } return 0; } bool AP_SerialBus_I2C::write(uint8_t reg) { return _i2c->write(_addr, 1, ®) == 0; } bool AP_SerialBus_I2C::sem_take_blocking() { return _i2c_sem->take(10); } bool AP_SerialBus_I2C::sem_take_nonblocking() { return _i2c_sem->take_nonblocking(); } void AP_SerialBus_I2C::sem_give() { _i2c_sem->give(); } /* constructor */ AP_Baro_MS56XX::AP_Baro_MS56XX(AP_Baro &baro, AP_SerialBus *serial, bool use_timer) : AP_Baro_Backend(baro), _serial(serial), _updated(false), _state(0), _last_timer(0), _use_timer(use_timer), _D1(0.0f), _D2(0.0f) { } void AP_Baro_MS56XX::_init() { _instance = _frontend.register_sensor(); _serial->init(); // we need to suspend timers to prevent other SPI drivers grabbing // the bus while we do the long initialisation hal.scheduler->suspend_timer_procs(); if (!_serial->sem_take_blocking()){ AP_HAL::panic("PANIC: AP_Baro_MS56XX: failed to take serial semaphore for init"); } _serial->write(CMD_MS5611_RESET); hal.scheduler->delay(4); uint16_t prom[8]; if (!_read_prom(prom)) { AP_HAL::panic("Can't read PROM"); } // Save factory calibration coefficients _c1 = prom[1]; _c2 = prom[2]; _c3 = prom[3]; _c4 = prom[4]; _c5 = prom[5]; _c6 = prom[6]; // Send a command to read Temp first _serial->write(ADDR_CMD_CONVERT_D2); _last_timer = AP_HAL::micros(); _state = 0; _s_D1 = 0; _s_D2 = 0; _d1_count = 0; _d2_count = 0; _serial->sem_give(); hal.scheduler->resume_timer_procs(); if (_use_timer) { /* timer needs to be called every 10ms so set the freq_div to 10 */ _timesliced = hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_Baro_MS56XX::_timer, void), 10); } } /** * MS56XX crc4 method from datasheet for 16 bytes (8 short values) */ static uint16_t crc4(uint16_t *data) { uint16_t n_rem = 0; uint8_t n_bit; for (uint8_t cnt = 0; cnt < 16; cnt++) { /* uneven bytes */ if (cnt & 1) { n_rem ^= (uint8_t)((data[cnt >> 1]) & 0x00FF); } else { n_rem ^= (uint8_t)(data[cnt >> 1] >> 8); } for (n_bit = 8; n_bit > 0; n_bit--) { if (n_rem & 0x8000) { n_rem = (n_rem << 1) ^ 0x3000; } else { n_rem = (n_rem << 1); } } } return (n_rem >> 12) & 0xF; } bool AP_Baro_MS56XX::_read_prom(uint16_t prom[8]) { /* * MS5611-01BA datasheet, CYCLIC REDUNDANCY CHECK (CRC): "MS5611-01BA * contains a PROM memory with 128-Bit. A 4-bit CRC has been implemented * to check the data validity in memory." * * CRC field must me removed for CRC-4 calculation. */ for (uint8_t i = 0; i < 8; i++) { prom[i] = _serial->read_16bits(CMD_MS56XX_PROM + (i << 1)); } /* save the read crc */ const uint16_t crc_read = prom[7] & 0xf; /* remove CRC byte */ prom[7] &= 0xff00; return crc_read == crc4(prom); } bool AP_Baro_MS5637::_read_prom(uint16_t prom[8]) { /* * MS5637-02BA03 datasheet, CYCLIC REDUNDANCY CHECK (CRC): "MS5637 * contains a PROM memory with 112-Bit. A 4-bit CRC has been implemented * to check the data validity in memory." * * 8th PROM word must be zeroed and CRC field removed for CRC-4 * calculation. */ for (uint8_t i = 0; i < 7; i++) { prom[i] = _serial->read_16bits(CMD_MS56XX_PROM + (i << 1)); } prom[7] = 0; /* save the read crc */ const uint16_t crc_read = (prom[0] & 0xf000) >> 12; /* remove CRC byte */ prom[0] &= ~0xf000; return crc_read == crc4(prom); } /* Read the sensor. This is a state machine We read one time Temperature (state=1) and then 4 times Pressure (states 2-5) temperature does not change so quickly... */ void AP_Baro_MS56XX::_timer(void) { // Throttle read rate to 100hz maximum. if (!_timesliced && AP_HAL::micros() - _last_timer < 10000) { return; } if (!_serial->sem_take_nonblocking()) { return; } if (_state == 0) { // On state 0 we read temp uint32_t d2 = _serial->read_24bits(0); if (d2 != 0) { _s_D2 += d2; _d2_count++; if (_d2_count == 32) { // we have summed 32 values. This only happens // when we stop reading the barometer for a long time // (more than 1.2 seconds) _s_D2 >>= 1; _d2_count = 16; } if (_serial->write(ADDR_CMD_CONVERT_D1)) { // Command to read pressure _state++; } } else { /* if read fails, re-initiate a temperature read command or we are * stuck */ _serial->write(ADDR_CMD_CONVERT_D2); } } else { uint32_t d1 = _serial->read_24bits(0); if (d1 != 0) { // occasional zero values have been seen on the PXF // board. These may be SPI errors, but safest to ignore _s_D1 += d1; _d1_count++; if (_d1_count == 128) { // we have summed 128 values. This only happens // when we stop reading the barometer for a long time // (more than 1.2 seconds) _s_D1 >>= 1; _d1_count = 64; } // Now a new reading exists _updated = true; if (_state == 4) { if (_serial->write(ADDR_CMD_CONVERT_D2)) { // Command to read temperature _state = 0; } } else { if (_serial->write(ADDR_CMD_CONVERT_D1)) { // Command to read pressure _state++; } } } else { /* if read fails, re-initiate a pressure read command or we are * stuck */ _serial->write(ADDR_CMD_CONVERT_D1); } } _last_timer = AP_HAL::micros(); _serial->sem_give(); } void AP_Baro_MS56XX::update() { if (!_use_timer) { // if we're not using the timer then accumulate one more time // to cope with the calibration loop and minimise lag accumulate(); } if (!_updated) { return; } uint32_t sD1, sD2; uint8_t d1count, d2count; // Suspend timer procs because these variables are written to // in "_update". hal.scheduler->suspend_timer_procs(); sD1 = _s_D1; _s_D1 = 0; sD2 = _s_D2; _s_D2 = 0; d1count = _d1_count; _d1_count = 0; d2count = _d2_count; _d2_count = 0; _updated = false; hal.scheduler->resume_timer_procs(); if (d1count != 0) { _D1 = ((float)sD1) / d1count; } if (d2count != 0) { _D2 = ((float)sD2) / d2count; } _calculate(); } /* MS5611 class */ AP_Baro_MS5611::AP_Baro_MS5611(AP_Baro &baro, AP_SerialBus *serial, bool use_timer) : AP_Baro_MS56XX(baro, serial, use_timer) { _init(); } // Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100). void AP_Baro_MS5611::_calculate() { float dT; float TEMP; float OFF; float SENS; // Formulas from manufacturer datasheet // sub -15c temperature compensation is not included // we do the calculations using floating point allows us to take advantage // of the averaging of D1 and D1 over multiple samples, giving us more // precision dT = _D2-(((uint32_t)_c5)<<8); TEMP = (dT * _c6)/8388608; OFF = _c2 * 65536.0f + (_c4 * dT) / 128; SENS = _c1 * 32768.0f + (_c3 * dT) / 256; if (TEMP < 0) { // second order temperature compensation when under 20 degrees C float T2 = (dT*dT) / 0x80000000; float Aux = TEMP*TEMP; float OFF2 = 2.5f*Aux; float SENS2 = 1.25f*Aux; TEMP = TEMP - T2; OFF = OFF - OFF2; SENS = SENS - SENS2; } float pressure = (_D1*SENS/2097152 - OFF)/32768; float temperature = (TEMP + 2000) * 0.01f; _copy_to_frontend(_instance, pressure, temperature); } /* MS5607 Class */ AP_Baro_MS5607::AP_Baro_MS5607(AP_Baro &baro, AP_SerialBus *serial, bool use_timer) : AP_Baro_MS56XX(baro, serial, use_timer) { _init(); } // Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100). void AP_Baro_MS5607::_calculate() { float dT; float TEMP; float OFF; float SENS; // Formulas from manufacturer datasheet // sub -15c temperature compensation is not included // we do the calculations using floating point allows us to take advantage // of the averaging of D1 and D1 over multiple samples, giving us more // precision dT = _D2-(((uint32_t)_c5)<<8); TEMP = (dT * _c6)/8388608; OFF = _c2 * 131072.0f + (_c4 * dT) / 64; SENS = _c1 * 65536.0f + (_c3 * dT) / 128; if (TEMP < 0) { // second order temperature compensation when under 20 degrees C float T2 = (dT*dT) / 0x80000000; float Aux = TEMP*TEMP; float OFF2 = 61.0f*Aux/16.0f; float SENS2 = 2.0f*Aux; TEMP = TEMP - T2; OFF = OFF - OFF2; SENS = SENS - SENS2; } float pressure = (_D1*SENS/2097152 - OFF)/32768; float temperature = (TEMP + 2000) * 0.01f; _copy_to_frontend(_instance, pressure, temperature); } /* MS563 Class */ AP_Baro_MS5637::AP_Baro_MS5637(AP_Baro &baro, AP_SerialBus *serial, bool use_timer) : AP_Baro_MS56XX(baro, serial, use_timer) { _init(); } // Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100). void AP_Baro_MS5637::_calculate() { int32_t dT, TEMP; int64_t OFF, SENS; int32_t raw_pressure = _D1; int32_t raw_temperature = _D2; // Formulas from manufacturer datasheet // sub -15c temperature compensation is not included dT = raw_temperature - (((uint32_t)_c5) << 8); TEMP = 2000 + ((int64_t)dT * (int64_t)_c6) / 8388608; OFF = (int64_t)_c2 * (int64_t)131072 + ((int64_t)_c4 * (int64_t)dT) / (int64_t)64; SENS = (int64_t)_c1 * (int64_t)65536 + ((int64_t)_c3 * (int64_t)dT) / (int64_t)128; if (TEMP < 2000) { // second order temperature compensation when under 20 degrees C int32_t T2 = ((int64_t)3 * ((int64_t)dT * (int64_t)dT) / (int64_t)8589934592); int64_t aux = (TEMP - 2000) * (TEMP - 2000); int64_t OFF2 = 61 * aux / 16; int64_t SENS2 = 29 * aux / 16; TEMP = TEMP - T2; OFF = OFF - OFF2; SENS = SENS - SENS2; } int32_t pressure = ((int64_t)raw_pressure * SENS / (int64_t)2097152 - OFF) / (int64_t)32768; float temperature = TEMP * 0.01f; _copy_to_frontend(_instance, (float)pressure, temperature); } /* Read the sensor from main code. This is only used for I2C MS5611 to avoid conflicts on the semaphore from calling it in a timer, which conflicts with the compass driver use of I2C */ void AP_Baro_MS56XX::accumulate(void) { if (!_use_timer) { // the timer isn't being called as a timer, so we need to call // it in accumulate() _timer(); } }