#include "Sub.h" #include "GCS_Mavlink.h" #include MAV_TYPE GCS_Sub::frame_type() const { return MAV_TYPE_SUBMARINE; } MAV_MODE GCS_MAVLINK_Sub::base_mode() const { uint8_t _base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED; // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation switch (sub.control_mode) { case Mode::Number::AUTO: case Mode::Number::GUIDED: case Mode::Number::CIRCLE: case Mode::Number::POSHOLD: _base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; default: break; } // all modes except INITIALISING have some form of manual // override if stick mixing is enabled _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; if (sub.motors.armed()) { _base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode _base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; return (MAV_MODE)_base_mode; } uint32_t GCS_Sub::custom_mode() const { return (uint32_t)sub.control_mode; } MAV_STATE GCS_MAVLINK_Sub::vehicle_system_status() const { // set system as critical if any failsafe have triggered if (sub.any_failsafe_triggered()) { return MAV_STATE_CRITICAL; } if (sub.motors.armed()) { return MAV_STATE_ACTIVE; } return MAV_STATE_STANDBY; } void GCS_MAVLINK_Sub::send_banner() { GCS_MAVLINK::send_banner(); send_text(MAV_SEVERITY_INFO, "Frame: %s", sub.motors.get_frame_string()); } void GCS_MAVLINK_Sub::send_nav_controller_output() const { const Vector3f &targets = sub.attitude_control.get_att_target_euler_cd(); mavlink_msg_nav_controller_output_send( chan, targets.x * 1.0e-2f, targets.y * 1.0e-2f, targets.z * 1.0e-2f, sub.wp_nav.get_wp_bearing_to_destination() * 1.0e-2f, MIN(sub.wp_nav.get_wp_distance_to_destination() * 1.0e-2f, UINT16_MAX), sub.pos_control.get_pos_error_z_cm() * 1.0e-2f, 0, 0); } int16_t GCS_MAVLINK_Sub::vfr_hud_throttle() const { return (int16_t)(sub.motors.get_throttle() * 100); } // Work around to get temperature sensor data out void GCS_MAVLINK_Sub::send_scaled_pressure3() { #if AP_TEMPERATURE_SENSOR_ENABLED float temperature; if (!sub.temperature_sensor.get_temperature(temperature)) { return; } mavlink_msg_scaled_pressure3_send( chan, AP_HAL::millis(), 0, 0, temperature * 100, 0); // TODO: use differential pressure temperature #endif } bool GCS_MAVLINK_Sub::send_info() { // Just do this all at once, hopefully the hard-wire telemetry requirement means this is ok // Name is char[10] CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("CamTilt", 1 - (SRV_Channels::get_output_norm(SRV_Channel::k_mount_tilt) / 2.0f + 0.5f)); CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("CamPan", 1 - (SRV_Channels::get_output_norm(SRV_Channel::k_mount_pan) / 2.0f + 0.5f)); CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("TetherTrn", sub.quarter_turn_count/4); CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("Lights1", SRV_Channels::get_output_norm(SRV_Channel::k_rcin9) / 2.0f + 0.5f); CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("Lights2", SRV_Channels::get_output_norm(SRV_Channel::k_rcin10) / 2.0f + 0.5f); CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("PilotGain", sub.gain); CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("InputHold", sub.input_hold_engaged); CHECK_PAYLOAD_SIZE(NAMED_VALUE_FLOAT); send_named_float("RollPitch", sub.roll_pitch_flag); return true; } /* send PID tuning message */ void GCS_MAVLINK_Sub::send_pid_tuning() { const Parameters &g = sub.g; AP_AHRS &ahrs = AP::ahrs(); AC_AttitudeControl_Sub &attitude_control = sub.attitude_control; const Vector3f &gyro = ahrs.get_gyro(); if (g.gcs_pid_mask & 1) { const AP_PIDInfo &pid_info = attitude_control.get_rate_roll_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_ROLL, pid_info.target*0.01f, degrees(gyro.x), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f, pid_info.slew_rate, pid_info.Dmod); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } if (g.gcs_pid_mask & 2) { const AP_PIDInfo &pid_info = attitude_control.get_rate_pitch_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_PITCH, pid_info.target*0.01f, degrees(gyro.y), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f, pid_info.slew_rate, pid_info.Dmod); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } if (g.gcs_pid_mask & 4) { const AP_PIDInfo &pid_info = attitude_control.get_rate_yaw_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_YAW, pid_info.target*0.01f, degrees(gyro.z), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f, pid_info.slew_rate, pid_info.Dmod); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } if (g.gcs_pid_mask & 8) { const AP_PIDInfo &pid_info = sub.pos_control.get_accel_z_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_ACCZ, pid_info.target*0.01f, -(ahrs.get_accel_ef().z + GRAVITY_MSS), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f, pid_info.slew_rate, pid_info.Dmod); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } } uint8_t GCS_MAVLINK_Sub::sysid_my_gcs() const { return sub.g.sysid_my_gcs; } bool GCS_Sub::vehicle_initialised() const { return sub.ap.initialised; } // try to send a message, return false if it won't fit in the serial tx buffer bool GCS_MAVLINK_Sub::try_send_message(enum ap_message id) { switch (id) { case MSG_NAMED_FLOAT: send_info(); break; case MSG_TERRAIN: #if AP_TERRAIN_AVAILABLE CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST); sub.terrain.send_request(chan); #endif break; default: return GCS_MAVLINK::try_send_message(id); } return true; } const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Stream rate of RAW_IMU, SCALED_IMU2, SCALED_PRESSURE, and SENSOR_OFFSETS to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_RAW_SENSORS], 0), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Stream rate of SYS_STATUS, MEMINFO, MISSION_CURRENT, GPS_RAW_INT, NAV_CONTROLLER_OUTPUT, and LIMITS_STATUS to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_EXTENDED_STATUS], 0), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS_RAW to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_RC_CHANNELS], 0), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Stream rate of GLOBAL_POSITION_INT to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_POSITION], 0), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Stream rate of ATTITUDE and SIMSTATE (SITL only) to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_EXTRA1], 0), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Stream rate of VFR_HUD to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_EXTRA2], 0), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Stream rate of AHRS and SYSTEM_TIME to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_EXTRA3], 0), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Stream rate of PARAM_VALUE to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK_Parameters, streamRates[GCS_MAVLINK::STREAM_PARAMS], 0), AP_GROUPEND }; static const ap_message STREAM_RAW_SENSORS_msgs[] = { MSG_RAW_IMU, MSG_SCALED_IMU2, MSG_SCALED_IMU3, MSG_SCALED_PRESSURE, MSG_SCALED_PRESSURE2, MSG_SCALED_PRESSURE3, }; static const ap_message STREAM_EXTENDED_STATUS_msgs[] = { MSG_SYS_STATUS, MSG_POWER_STATUS, MSG_MCU_STATUS, MSG_MEMINFO, MSG_CURRENT_WAYPOINT, MSG_GPS_RAW, MSG_GPS_RTK, MSG_GPS2_RAW, MSG_GPS2_RTK, MSG_NAV_CONTROLLER_OUTPUT, #if AP_FENCE_ENABLED MSG_FENCE_STATUS, #endif MSG_NAMED_FLOAT }; static const ap_message STREAM_POSITION_msgs[] = { MSG_LOCATION, MSG_LOCAL_POSITION }; static const ap_message STREAM_RC_CHANNELS_msgs[] = { MSG_SERVO_OUTPUT_RAW, MSG_RC_CHANNELS, MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection }; static const ap_message STREAM_EXTRA1_msgs[] = { MSG_ATTITUDE, MSG_SIMSTATE, MSG_AHRS2, MSG_PID_TUNING }; static const ap_message STREAM_EXTRA2_msgs[] = { MSG_VFR_HUD }; static const ap_message STREAM_EXTRA3_msgs[] = { MSG_AHRS, MSG_SYSTEM_TIME, MSG_RANGEFINDER, MSG_DISTANCE_SENSOR, #if AP_TERRAIN_AVAILABLE MSG_TERRAIN, #endif MSG_BATTERY_STATUS, MSG_GIMBAL_DEVICE_ATTITUDE_STATUS, MSG_OPTICAL_FLOW, #if COMPASS_CAL_ENABLED MSG_MAG_CAL_REPORT, MSG_MAG_CAL_PROGRESS, #endif MSG_EKF_STATUS_REPORT, MSG_VIBRATION, #if AP_RPM_ENABLED MSG_RPM, #endif MSG_ESC_TELEMETRY, }; static const ap_message STREAM_PARAMS_msgs[] = { MSG_NEXT_PARAM }; const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = { MAV_STREAM_ENTRY(STREAM_RAW_SENSORS), MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS), MAV_STREAM_ENTRY(STREAM_POSITION), MAV_STREAM_ENTRY(STREAM_RC_CHANNELS), MAV_STREAM_ENTRY(STREAM_EXTRA1), MAV_STREAM_ENTRY(STREAM_EXTRA2), MAV_STREAM_ENTRY(STREAM_EXTRA3), MAV_STREAM_ENTRY(STREAM_PARAMS), MAV_STREAM_TERMINATOR // must have this at end of stream_entries }; bool GCS_MAVLINK_Sub::handle_guided_request(AP_Mission::Mission_Command &cmd) { return sub.do_guided(cmd); } MAV_RESULT GCS_MAVLINK_Sub::_handle_command_preflight_calibration_baro(const mavlink_message_t &msg) { if (sub.motors.armed()) { gcs().send_text(MAV_SEVERITY_INFO, "Disarm before calibration."); return MAV_RESULT_FAILED; } if (!sub.control_check_barometer()) { return MAV_RESULT_FAILED; } AP::baro().calibrate(true); return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK_Sub::_handle_command_preflight_calibration(const mavlink_command_int_t &packet, const mavlink_message_t &msg) { if (packet.y == 1) { // compassmot calibration //result = sub.mavlink_compassmot(chan); gcs().send_text(MAV_SEVERITY_INFO, "#CompassMot calibration not supported"); return MAV_RESULT_UNSUPPORTED; } return GCS_MAVLINK::_handle_command_preflight_calibration(packet, msg); } MAV_RESULT GCS_MAVLINK_Sub::handle_command_do_set_roi(const Location &roi_loc) { if (!roi_loc.check_latlng()) { return MAV_RESULT_FAILED; } sub.mode_auto.set_auto_yaw_roi(roi_loc); return MAV_RESULT_ACCEPTED; } bool GCS_MAVLINK_Sub::set_home_to_current_location(bool _lock) { return sub.set_home_to_current_location(_lock); } bool GCS_MAVLINK_Sub::set_home(const Location& loc, bool _lock) { return sub.set_home(loc, _lock); } MAV_RESULT GCS_MAVLINK_Sub::handle_command_int_packet(const mavlink_command_int_t &packet, const mavlink_message_t &msg) { switch(packet.command) { case MAV_CMD_CONDITION_YAW: return handle_MAV_CMD_CONDITION_YAW(packet); case MAV_CMD_DO_CHANGE_SPEED: return handle_MAV_CMD_DO_CHANGE_SPEED(packet); case MAV_CMD_DO_MOTOR_TEST: return handle_MAV_CMD_DO_MOTOR_TEST(packet); case MAV_CMD_MISSION_START: return handle_MAV_CMD_MISSION_START(packet); case MAV_CMD_NAV_LOITER_UNLIM: return handle_MAV_CMD_NAV_LOITER_UNLIM(packet); case MAV_CMD_NAV_LAND: return handle_MAV_CMD_NAV_LAND(packet); } return GCS_MAVLINK::handle_command_int_packet(packet, msg); } MAV_RESULT GCS_MAVLINK_Sub::handle_MAV_CMD_NAV_LOITER_UNLIM(const mavlink_command_int_t &packet) { if (!sub.set_mode(Mode::Number::POSHOLD, ModeReason::GCS_COMMAND)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK_Sub::handle_MAV_CMD_NAV_LAND(const mavlink_command_int_t &packet) { if (!sub.set_mode(Mode::Number::SURFACE, ModeReason::GCS_COMMAND)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK_Sub::handle_MAV_CMD_CONDITION_YAW(const mavlink_command_int_t &packet) { // param1 : target angle [0-360] // param2 : speed during change [deg per second] // param3 : direction (-1:ccw, +1:cw) // param4 : relative offset (1) or absolute angle (0) if ((packet.param1 >= 0.0f) && (packet.param1 <= 360.0f) && (is_zero(packet.param4) || is_equal(packet.param4,1.0f))) { sub.mode_auto.set_auto_yaw_look_at_heading(packet.param1, packet.param2, (int8_t)packet.param3, (uint8_t)packet.param4); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_DENIED; } MAV_RESULT GCS_MAVLINK_Sub::handle_MAV_CMD_DO_CHANGE_SPEED(const mavlink_command_int_t &packet) { // param1 : unused // param2 : new speed in m/s // param3 : unused // param4 : unused if (packet.param2 > 0.0f) { sub.wp_nav.set_speed_xy(packet.param2 * 100.0f); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } MAV_RESULT GCS_MAVLINK_Sub::handle_MAV_CMD_MISSION_START(const mavlink_command_int_t &packet) { if (sub.motors.armed() && sub.set_mode(Mode::Number::AUTO, ModeReason::GCS_COMMAND)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } MAV_RESULT GCS_MAVLINK_Sub::handle_MAV_CMD_DO_MOTOR_TEST(const mavlink_command_int_t &packet) { // param1 : motor sequence number (a number from 1 to max number of motors on the vehicle) // param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum) // param3 : throttle (range depends upon param2) // param4 : timeout (in seconds) if (!sub.handle_do_motor_test(packet)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } void GCS_MAVLINK_Sub::handleMessage(const mavlink_message_t &msg) { switch (msg.msgid) { case MAVLINK_MSG_ID_MANUAL_CONTROL: { // MAV ID: 69 if (msg.sysid != sub.g.sysid_my_gcs) { break; // Only accept control from our gcs } mavlink_manual_control_t packet; mavlink_msg_manual_control_decode(&msg, &packet); if (packet.target != sub.g.sysid_this_mav) { break; // only accept control aimed at us } sub.transform_manual_control_to_rc_override(packet.x,packet.y,packet.z,packet.r,packet.buttons); sub.failsafe.last_pilot_input_ms = AP_HAL::millis(); // a RC override message is considered to be a 'heartbeat' // from the ground station for failsafe purposes gcs().sysid_myggcs_seen(AP_HAL::millis()); break; } case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: { // MAV ID: 70 if (msg.sysid != sub.g.sysid_my_gcs) { break; // Only accept control from our gcs } sub.failsafe.last_pilot_input_ms = AP_HAL::millis(); // a RC override message is considered to be a 'heartbeat' // from the ground station for failsafe purposes handle_rc_channels_override(msg); break; } case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: { // MAV ID: 82 // decode packet mavlink_set_attitude_target_t packet; mavlink_msg_set_attitude_target_decode(&msg, &packet); // ensure type_mask specifies to use attitude // the thrust can be used from the altitude hold if (packet.type_mask & (1<<6)) { sub.set_attitude_target_no_gps = {AP_HAL::millis(), packet}; } // ensure type_mask specifies to use attitude and thrust if ((packet.type_mask & ((1<<7)|(1<<6))) != 0) { break; } // convert thrust to climb rate packet.thrust = constrain_float(packet.thrust, 0.0f, 1.0f); float climb_rate_cms = 0.0f; if (is_equal(packet.thrust, 0.5f)) { climb_rate_cms = 0.0f; } else if (packet.thrust > 0.5f) { // climb at up to WPNAV_SPEED_UP climb_rate_cms = (packet.thrust - 0.5f) * 2.0f * sub.wp_nav.get_default_speed_up(); } else { // descend at up to WPNAV_SPEED_DN climb_rate_cms = (packet.thrust - 0.5f) * 2.0f * sub.wp_nav.get_default_speed_down(); } sub.mode_guided.guided_set_angle(Quaternion(packet.q[0],packet.q[1],packet.q[2],packet.q[3]), climb_rate_cms); break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: { // MAV ID: 84 // decode packet mavlink_set_position_target_local_ned_t packet; mavlink_msg_set_position_target_local_ned_decode(&msg, &packet); // exit if vehicle is not in Guided mode or Auto-Guided mode if ((sub.control_mode != Mode::Number::GUIDED) && !(sub.control_mode == Mode::Number::AUTO && sub.auto_mode == Auto_NavGuided)) { break; } // check for supported coordinate frames if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED && packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED && packet.coordinate_frame != MAV_FRAME_BODY_NED && packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED && packet.coordinate_frame != MAV_FRAME_BODY_FRD) { break; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; // prepare position Vector3f pos_vector; if (!pos_ignore) { // convert to cm pos_vector = Vector3f(packet.x * 100.0f, packet.y * 100.0f, -packet.z * 100.0f); // rotate from body-frame if necessary if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_FRD || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { sub.rotate_body_frame_to_NE(pos_vector.x, pos_vector.y); } // add body offset if necessary if (packet.coordinate_frame == MAV_FRAME_LOCAL_OFFSET_NED || packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_FRD || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { pos_vector += sub.inertial_nav.get_position_neu_cm(); } } // prepare velocity Vector3f vel_vector; if (!vel_ignore) { // convert to cm vel_vector = Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f); // rotate from body-frame if necessary if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_FRD || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { sub.rotate_body_frame_to_NE(vel_vector.x, vel_vector.y); } } // prepare yaw float yaw_cd = 0.0f; bool yaw_relative = false; float yaw_rate_cds = 0.0f; if (!yaw_ignore) { yaw_cd = ToDeg(packet.yaw) * 100.0f; yaw_relative = packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED; } if (!yaw_rate_ignore) { yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f; } // send request if (!pos_ignore && !vel_ignore && acc_ignore) { sub.mode_guided.guided_set_destination_posvel(pos_vector, vel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative); } else if (pos_ignore && !vel_ignore && acc_ignore) { sub.mode_guided.guided_set_velocity(vel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative); } else if (!pos_ignore && vel_ignore && acc_ignore) { sub.mode_guided.guided_set_destination(pos_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative); } break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: { // MAV ID: 86 // decode packet mavlink_set_position_target_global_int_t packet; mavlink_msg_set_position_target_global_int_decode(&msg, &packet); // exit if vehicle is not in Guided, Auto-Guided, or Depth Hold modes if ((sub.control_mode != Mode::Number::GUIDED) && !(sub.control_mode == Mode::Number::AUTO && sub.auto_mode == Auto_NavGuided) && !(sub.control_mode == Mode::Number::ALT_HOLD)) { break; } bool z_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_Z_IGNORE; bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; /* * for future use: * bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE; * bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; * bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; */ if (!z_ignore && sub.control_mode == Mode::Number::ALT_HOLD) { // Control only target depth when in ALT_HOLD sub.pos_control.set_pos_target_z_cm(packet.alt*100); break; } Vector3f pos_neu_cm; // position (North, East, Up coordinates) in centimeters if (!pos_ignore) { // sanity check location if (!check_latlng(packet.lat_int, packet.lon_int)) { break; } Location::AltFrame frame; if (!mavlink_coordinate_frame_to_location_alt_frame((MAV_FRAME)packet.coordinate_frame, frame)) { // unknown coordinate frame break; } const Location loc{ packet.lat_int, packet.lon_int, int32_t(packet.alt*100), frame, }; if (!loc.get_vector_from_origin_NEU(pos_neu_cm)) { break; } } if (!pos_ignore && !vel_ignore && acc_ignore) { sub.mode_guided.guided_set_destination_posvel(pos_neu_cm, Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f)); } else if (pos_ignore && !vel_ignore && acc_ignore) { sub.mode_guided.guided_set_velocity(Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f)); } else if (!pos_ignore && vel_ignore && acc_ignore) { sub.mode_guided.guided_set_destination(pos_neu_cm); } break; } case MAVLINK_MSG_ID_TERRAIN_DATA: case MAVLINK_MSG_ID_TERRAIN_CHECK: #if AP_TERRAIN_AVAILABLE sub.terrain.handle_data(chan, msg); #endif break; // This adds support for leak detectors in a separate enclosure // connected to a mavlink enabled subsystem case MAVLINK_MSG_ID_SYS_STATUS: { uint32_t MAV_SENSOR_WATER = 0x20000000; mavlink_sys_status_t packet; mavlink_msg_sys_status_decode(&msg, &packet); if ((packet.onboard_control_sensors_enabled & MAV_SENSOR_WATER) && !(packet.onboard_control_sensors_health & MAV_SENSOR_WATER)) { sub.leak_detector.set_detect(); } } break; default: handle_common_message(msg); break; } // end switch } // end handle mavlink uint64_t GCS_MAVLINK_Sub::capabilities() const { return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT | MAV_PROTOCOL_CAPABILITY_MISSION_INT | MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED | MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT | MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION | #if AP_TERRAIN_AVAILABLE (sub.terrain.enabled() ? MAV_PROTOCOL_CAPABILITY_TERRAIN : 0) | #endif MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET | GCS_MAVLINK::capabilities() ); } MAV_RESULT GCS_MAVLINK_Sub::handle_flight_termination(const mavlink_command_int_t &packet) { if (packet.param1 > 0.5f) { sub.arming.disarm(AP_Arming::Method::TERMINATION); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } int32_t GCS_MAVLINK_Sub::global_position_int_alt() const { if (!sub.ap.depth_sensor_present) { return 0; } return GCS_MAVLINK::global_position_int_alt(); } int32_t GCS_MAVLINK_Sub::global_position_int_relative_alt() const { if (!sub.ap.depth_sensor_present) { return 0; } return GCS_MAVLINK::global_position_int_relative_alt(); } #if HAL_HIGH_LATENCY2_ENABLED int16_t GCS_MAVLINK_Sub::high_latency_target_altitude() const { AP_AHRS &ahrs = AP::ahrs(); Location global_position_current; UNUSED_RESULT(ahrs.get_location(global_position_current)); //return units are m if (sub.control_mode == Mode::Number::AUTO || sub.control_mode == Mode::Number::GUIDED) { return 0.01 * (global_position_current.alt + sub.pos_control.get_pos_error_z_cm()); } return 0; } uint8_t GCS_MAVLINK_Sub::high_latency_tgt_heading() const { // return units are deg/2 if (sub.control_mode == Mode::Number::AUTO || sub.control_mode == Mode::Number::GUIDED) { // need to convert -18000->18000 to 0->360/2 return wrap_360_cd(sub.wp_nav.get_wp_bearing_to_destination()) / 200; } return 0; } uint16_t GCS_MAVLINK_Sub::high_latency_tgt_dist() const { // return units are dm if (sub.control_mode == Mode::Number::AUTO || sub.control_mode == Mode::Number::GUIDED) { return MIN(sub.wp_nav.get_wp_distance_to_destination() * 0.001, UINT16_MAX); } return 0; } uint8_t GCS_MAVLINK_Sub::high_latency_tgt_airspeed() const { // return units are m/s*5 if (sub.control_mode == Mode::Number::AUTO || sub.control_mode == Mode::Number::GUIDED) { return MIN((sub.pos_control.get_vel_desired_cms().length()/100) * 5, UINT8_MAX); } return 0; } #endif // HAL_HIGH_LATENCY2_ENABLED