/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if FRAME_CONFIG == OCTA_FRAME static void init_motors_out() { #if INSTANT_PWM == 0 APM_RC.SetFastOutputChannels( _BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4) | _BV(MOT_5) | _BV(MOT_6) | _BV(MOT_7) | _BV(MOT_8) ); #endif } static void motors_output_enable() { APM_RC.enable_out(MOT_1); APM_RC.enable_out(MOT_2); APM_RC.enable_out(MOT_3); APM_RC.enable_out(MOT_4); APM_RC.enable_out(MOT_5); APM_RC.enable_out(MOT_6); APM_RC.enable_out(MOT_7); APM_RC.enable_out(MOT_8); } static void output_motors_armed() { int roll_out, pitch_out; int out_min = g.rc_3.radio_min; int out_max = g.rc_3.radio_max; // Throttle is 0 to 1000 only g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, 800); if(g.rc_3.servo_out > 0) out_min = g.rc_3.radio_min + MINIMUM_THROTTLE; g.rc_1.calc_pwm(); g.rc_2.calc_pwm(); g.rc_3.calc_pwm(); g.rc_4.calc_pwm(); if(g.frame_orientation == X_FRAME){ roll_out = (float)g.rc_1.pwm_out * 0.4; pitch_out = (float)g.rc_2.pwm_out * 0.4; //Front side motor_out[MOT_2] = g.rc_3.radio_out + g.rc_2.pwm_out - roll_out; // CW FRONT RIGHT motor_out[MOT_3] = g.rc_3.radio_out + g.rc_2.pwm_out + roll_out; // CCW FRONT LEFT //Back side motor_out[MOT_6] = g.rc_3.radio_out - g.rc_2.pwm_out + roll_out; // CW BACK LEFT motor_out[MOT_7] = g.rc_3.radio_out - g.rc_2.pwm_out - roll_out; // CCW BACK RIGHT //Left side motor_out[MOT_4] = g.rc_3.radio_out + g.rc_1.pwm_out + pitch_out; // CW LEFT FRONT motor_out[MOT_5] = g.rc_3.radio_out + g.rc_1.pwm_out - pitch_out; // CCW LEFT BACK //Right side motor_out[MOT_1] = g.rc_3.radio_out - g.rc_1.pwm_out + pitch_out; // CCW RIGHT FRONT motor_out[MOT_8] = g.rc_3.radio_out - g.rc_1.pwm_out - pitch_out; // CW RIGHT BACK }else if(g.frame_orientation == PLUS_FRAME){ roll_out = (float)g.rc_1.pwm_out * 0.71; pitch_out = (float)g.rc_2.pwm_out * 0.71; //Front side motor_out[MOT_1] = g.rc_3.radio_out - roll_out + pitch_out; // CCW FRONT RIGHT motor_out[MOT_2] = g.rc_3.radio_out + g.rc_2.pwm_out; // CW FRONT motor_out[MOT_3] = g.rc_3.radio_out + roll_out + pitch_out; // CCW FRONT LEFT //Left side motor_out[MOT_4] = g.rc_3.radio_out + g.rc_1.pwm_out; // CW LEFT //Right side motor_out[MOT_8] = g.rc_3.radio_out - g.rc_1.pwm_out; // CW RIGHT //Back side motor_out[MOT_7] = g.rc_3.radio_out - roll_out - pitch_out; // CCW BACK RIGHT motor_out[MOT_6] = g.rc_3.radio_out - g.rc_2.pwm_out; // CW BACK motor_out[MOT_5] = g.rc_3.radio_out + roll_out - pitch_out; // CCW BACK LEFT }else if(g.frame_orientation == V_FRAME){ int roll_out2, pitch_out2; int roll_out3, pitch_out3; int roll_out4, pitch_out4; roll_out = g.rc_1.pwm_out; pitch_out = g.rc_2.pwm_out; roll_out2 = (float)g.rc_1.pwm_out * 0.833; pitch_out2 = (float)g.rc_2.pwm_out * 0.34; roll_out3 = (float)g.rc_1.pwm_out * 0.666; pitch_out3 = (float)g.rc_2.pwm_out * 0.32; roll_out4 = g.rc_1.pwm_out / 2; pitch_out4 = (float)g.rc_2.pwm_out * 0.98; //Front side motor_out[MOT_4] = g.rc_3.radio_out + g.rc_2.pwm_out - roll_out; // CW FRONT RIGHT motor_out[MOT_5] = g.rc_3.radio_out + g.rc_2.pwm_out + roll_out; // CCW FRONT LEFT //Left side motor_out[MOT_6] = g.rc_3.radio_out + g.rc_1.pwm_out + pitch_out2; // CW LEFT FRONT motor_out[MOT_7] = g.rc_3.radio_out + g.rc_1.pwm_out - pitch_out3; // CCW LEFT BACK //Right side motor_out[MOT_3] = g.rc_3.radio_out - g.rc_1.pwm_out - pitch_out3; // CW RIGHT BACK motor_out[MOT_2] = g.rc_3.radio_out - g.rc_1.pwm_out + pitch_out2; // CCW RIGHT FRONT //Back side motor_out[MOT_8] = g.rc_3.radio_out - g.rc_2.pwm_out + roll_out4; // CW BACK LEFT motor_out[MOT_1] = g.rc_3.radio_out - g.rc_2.pwm_out - roll_out4; // CCW BACK RIGHT } // Yaw motor_out[MOT_1] += g.rc_4.pwm_out; // CCW motor_out[MOT_3] += g.rc_4.pwm_out; // CCW motor_out[MOT_5] += g.rc_4.pwm_out; // CCW motor_out[MOT_7] += g.rc_4.pwm_out; // CCW motor_out[MOT_2] -= g.rc_4.pwm_out; // CW motor_out[MOT_4] -= g.rc_4.pwm_out; // CW motor_out[MOT_6] -= g.rc_4.pwm_out; // CW motor_out[MOT_8] -= g.rc_4.pwm_out; // CW // TODO add stability patch motor_out[MOT_1] = min(motor_out[MOT_1], out_max); motor_out[MOT_2] = min(motor_out[MOT_2], out_max); motor_out[MOT_3] = min(motor_out[MOT_3], out_max); motor_out[MOT_4] = min(motor_out[MOT_4], out_max); motor_out[MOT_5] = min(motor_out[MOT_5], out_max); motor_out[MOT_6] = min(motor_out[MOT_6], out_max); motor_out[MOT_7] = min(motor_out[MOT_7], out_max); motor_out[MOT_8] = min(motor_out[MOT_8], out_max); // limit output so motors don't stop motor_out[MOT_1] = max(motor_out[MOT_1], out_min); motor_out[MOT_2] = max(motor_out[MOT_2], out_min); motor_out[MOT_3] = max(motor_out[MOT_3], out_min); motor_out[MOT_4] = max(motor_out[MOT_4], out_min); motor_out[MOT_5] = max(motor_out[MOT_5], out_min); motor_out[MOT_6] = max(motor_out[MOT_6], out_min); motor_out[MOT_7] = max(motor_out[MOT_7], out_min); motor_out[MOT_8] = max(motor_out[MOT_8], out_min); #if CUT_MOTORS == ENABLED // if we are not sending a throttle output, we cut the motors if(g.rc_3.servo_out == 0){ motor_out[MOT_1] = g.rc_3.radio_min; motor_out[MOT_2] = g.rc_3.radio_min; motor_out[MOT_3] = g.rc_3.radio_min; motor_out[MOT_4] = g.rc_3.radio_min; motor_out[MOT_5] = g.rc_3.radio_min; motor_out[MOT_6] = g.rc_3.radio_min; motor_out[MOT_7] = g.rc_3.radio_min; motor_out[MOT_8] = g.rc_3.radio_min; } #endif // this filter slows the acceleration of motors vs the deceleration // Idea by Denny Rowland to help with his Yaw issue for(int8_t m = 0; m <= 8; m++ ) { int c = ch_of_mot(m); if(motor_filtered[c] < motor_out[c]){ motor_filtered[c] = (motor_out[c] + motor_filtered[c]) / 2; }else{ // don't filter motor_filtered[c] = motor_out[c]; } } APM_RC.OutputCh(MOT_1, motor_filtered[MOT_1]); APM_RC.OutputCh(MOT_2, motor_filtered[MOT_2]); APM_RC.OutputCh(MOT_3, motor_filtered[MOT_3]); APM_RC.OutputCh(MOT_4, motor_filtered[MOT_4]); APM_RC.OutputCh(MOT_5, motor_filtered[MOT_5]); APM_RC.OutputCh(MOT_6, motor_filtered[MOT_6]); APM_RC.OutputCh(MOT_7, motor_filtered[MOT_7]); APM_RC.OutputCh(MOT_8, motor_filtered[MOT_8]); #if INSTANT_PWM == 1 // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); APM_RC.Force_Out6_Out7(); #endif } static void output_motors_disarmed() { if(g.rc_3.control_in > 0){ // we have pushed up the throttle // remove safety motor_auto_armed = true; } // fill the motor_out[] array for HIL use for (unsigned char i = 0; i < 11; i++) { motor_out[i] = g.rc_3.radio_min; } // Send commands to motors APM_RC.OutputCh(MOT_1, g.rc_3.radio_min); APM_RC.OutputCh(MOT_2, g.rc_3.radio_min); APM_RC.OutputCh(MOT_3, g.rc_3.radio_min); APM_RC.OutputCh(MOT_4, g.rc_3.radio_min); APM_RC.OutputCh(MOT_5, g.rc_3.radio_min); APM_RC.OutputCh(MOT_6, g.rc_3.radio_min); APM_RC.OutputCh(MOT_7, g.rc_3.radio_min); APM_RC.OutputCh(MOT_8, g.rc_3.radio_min); } static void output_motor_test() { if( g.frame_orientation == X_FRAME || g.frame_orientation == PLUS_FRAME ) { APM_RC.OutputCh(MOT_5, g.rc_3.radio_min); APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(MOT_1, g.rc_3.radio_min); APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(MOT_3, g.rc_3.radio_min); APM_RC.OutputCh(MOT_8, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(MOT_8, g.rc_3.radio_min); APM_RC.OutputCh(MOT_4, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(MOT_4, g.rc_3.radio_min); APM_RC.OutputCh(MOT_2, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(MOT_2, g.rc_3.radio_min); APM_RC.OutputCh(MOT_6, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(MOT_6, g.rc_3.radio_min); APM_RC.OutputCh(MOT_7, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(MOT_7, g.rc_3.radio_min); APM_RC.OutputCh(MOT_5, g.rc_3.radio_min + 100); delay(1000); } if( g.frame_orientation == V_FRAME ) { APM_RC.OutputCh(MOT_5, g.rc_3.radio_min); APM_RC.OutputCh(MOT_7, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(MOT_7, g.rc_3.radio_min); APM_RC.OutputCh(MOT_6, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(MOT_6, g.rc_3.radio_min); APM_RC.OutputCh(MOT_2, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(MOT_2, g.rc_3.radio_min); APM_RC.OutputCh(MOT_4, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(MOT_4, g.rc_3.radio_min); APM_RC.OutputCh(MOT_8, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(MOT_8, g.rc_3.radio_min); APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(MOT_3, g.rc_3.radio_min); APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(MOT_1, g.rc_3.radio_min); APM_RC.OutputCh(MOT_5, g.rc_3.radio_min + 100); delay(1000); } } #endif