#pragma once #include #define COMPASS_CAL_NUM_SPHERE_PARAMS 4 #define COMPASS_CAL_NUM_ELLIPSOID_PARAMS 9 #define COMPASS_CAL_NUM_SAMPLES 300 // number of samples required before fitting begins #define COMPASS_MIN_SCALE_FACTOR 0.85 #define COMPASS_MAX_SCALE_FACTOR 1.4 class CompassCalibrator { public: CompassCalibrator(); // set tolerance of calibration (aka fitness) void set_tolerance(float tolerance) { _tolerance = tolerance; } // set compass's initial orientation and whether it should be automatically fixed (if required) void set_orientation(enum Rotation orientation, bool is_external, bool fix_orientation); // start or stop the calibration void start(bool retry, float delay, uint16_t offset_max, uint8_t compass_idx); void stop(); // update the state machine and calculate offsets, diagonals and offdiagonals void update(bool &failure); void new_sample(const Vector3f &sample); bool check_for_timeout(); // running is true if actively calculating offsets, diagonals or offdiagonals bool running() const; // compass calibration states enum class Status { NOT_STARTED = 0, WAITING_TO_START = 1, RUNNING_STEP_ONE = 2, RUNNING_STEP_TWO = 3, SUCCESS = 4, FAILED = 5, BAD_ORIENTATION = 6, BAD_RADIUS = 7, }; // get status of calibrations progress Status get_status() const { return _status; } // get calibration outputs (offsets, diagonals, offdiagonals) and fitness void get_calibration(Vector3f &offsets, Vector3f &diagonals, Vector3f &offdiagonals, float &scale_factor); float get_fitness() const { return sqrtf(_fitness); } // get corrected (and original) orientation enum Rotation get_orientation() const { return _orientation; } enum Rotation get_original_orientation() const { return _orig_orientation; } float get_orientation_confidence() const { return _orientation_confidence; } // get completion percentage (0 to 100) for reporting to GCS float get_completion_percent() const; // get how many attempts have been made to calibrate for reporting to GCS uint8_t get_attempt() const { return _attempt; } // get completion mask for mavlink reporting (a bitmask of faces/directions for which we have compass samples) typedef uint8_t completion_mask_t[10]; const completion_mask_t& get_completion_mask() const { return _completion_mask; } private: // results class param_t { public: float* get_sphere_params() { return &radius; } float* get_ellipsoid_params() { return &offset.x; } float radius; // magnetic field strength calculated from samples Vector3f offset; // offsets Vector3f diag; // diagonal scaling Vector3f offdiag; // off diagonal scaling float scale_factor; // scaling factor to compensate for radius error }; // compact class for approximate attitude, to save memory class AttitudeSample { public: Matrix3f get_rotmat(); void set_from_ahrs(); private: int8_t roll; int8_t pitch; int8_t yaw; }; // compact class to hold compass samples, to save memory class CompassSample { public: Vector3f get() const; void set(const Vector3f &in); AttitudeSample att; private: int16_t x; int16_t y; int16_t z; }; // set status including any required initialisation bool set_status(Status status); // returns true if sample should be added to buffer bool accept_sample(const Vector3f &sample, uint16_t skip_index = UINT16_MAX); bool accept_sample(const CompassSample &sample, uint16_t skip_index = UINT16_MAX); // returns true if fit is acceptable bool fit_acceptable(); // clear sample buffer and reset offsets and scaling to their defaults void reset_state(); // initialize fitness before starting a fit void initialize_fit(); // true if enough samples have been collected and fitting has begun (aka runniong()) bool fitting() const; // thins out samples between step one and step two void thin_samples(); // calc the fitness of a single sample vs a set of parameters (offsets, diagonals, off diagonals) float calc_residual(const Vector3f& sample, const param_t& params) const; // calc the fitness of the parameters (offsets, diagonals, off diagonals) vs all the samples collected // returns 1.0e30f if the sample buffer is empty float calc_mean_squared_residuals(const param_t& params) const; // calculate initial offsets by simply taking the average values of the samples void calc_initial_offset(); // run sphere fit to calculate diagonals and offdiagonals void calc_sphere_jacob(const Vector3f& sample, const param_t& params, float* ret) const; void run_sphere_fit(); // run ellipsoid fit to calculate diagonals and offdiagonals void calc_ellipsoid_jacob(const Vector3f& sample, const param_t& params, float* ret) const; void run_ellipsoid_fit(); // update the completion mask based on a single sample void update_completion_mask(const Vector3f& sample); // reset and updated the completion mask using all samples in the sample buffer void update_completion_mask(); // calculate compass orientation Vector3f calculate_earth_field(CompassSample &sample, enum Rotation r); bool calculate_orientation(); // fix radius to compensate for sensor scaling errors bool fix_radius(); uint8_t _compass_idx; // index of the compass providing data Status _status; // current state of calibrator uint32_t _last_sample_ms; // system time of last sample received for timeout // values provided by caller float _delay_start_sec; // seconds to delay start of calibration (provided by caller) bool _retry; // true if calibration should be restarted on failured (provided by caller) float _tolerance = 5.0; // worst acceptable RMS tolerance (aka fitness). see set_tolerance() uint16_t _offset_max; // maximum acceptable offsets (provided by caller) // behavioral state uint32_t _start_time_ms; // system time start() function was last called uint8_t _attempt; // number of attempts have been made to calibrate completion_mask_t _completion_mask; // bitmask of directions in which we have samples CompassSample *_sample_buffer; // buffer of sensor values uint16_t _samples_collected; // number of samples in buffer uint16_t _samples_thinned; // number of samples removed by the thin_samples() call (called before step 2 begins) // fit state class param_t _params; // latest calibration outputs uint16_t _fit_step; // step during RUNNING_STEP_ONE/TWO which performs sphere fit and ellipsoid fit float _fitness; // fitness (mean squared residuals) of current parameters float _initial_fitness; // fitness before latest "fit" was attempted (used to determine if fit was an improvement) float _sphere_lambda; // sphere fit's lambda float _ellipsoid_lambda; // ellipsoid fit's lambda // variables for orientation checking enum Rotation _orientation; // latest detected orientation enum Rotation _orig_orientation; // original orientation provided by caller bool _is_external; // true if compass is external (provided by caller) bool _check_orientation; // true if orientation should be automatically checked bool _fix_orientation; // true if orientation should be fixed if necessary float _orientation_confidence; // measure of confidence in automatic orientation detection };