--[[ trajectory tracking aerobatic control See README.md for usage Written by Matthew Hampsey, Andy Palmer and Andrew Tridgell, with controller assistance from Paul Riseborough, testing by Henry Wurzburg ]]-- -- luacheck: only 0 -- setup param block for aerobatics, reserving 30 params beginning with AERO_ local PARAM_TABLE_KEY = 70 local PARAM_TABLE_PREFIX = 'AEROM_' assert(param:add_table(PARAM_TABLE_KEY, "AEROM_", 30), 'could not add param table') -- add a parameter and bind it to a variable function bind_add_param(name, idx, default_value) assert(param:add_param(PARAM_TABLE_KEY, idx, name, default_value), string.format('could not add param %s', name)) return Parameter(PARAM_TABLE_PREFIX .. name) end AEROM_ANG_ACCEL = bind_add_param('ANG_ACCEL', 1, 6000) AEROM_ANG_TC = bind_add_param('ANG_TC', 2, 0.1) -- 3 was AEROM_KE_ANG THR_PIT_FF = bind_add_param('THR_PIT_FF', 4, 80) SPD_P = bind_add_param('SPD_P', 5, 5) SPD_I = bind_add_param('SPD_I', 6, 25) ROLL_CORR_TC = bind_add_param('ROL_COR_TC', 8, 0.25) -- removed 9 and 10 TIME_CORR_P = bind_add_param('TIME_COR_P', 11, 1.0) ERR_CORR_P = bind_add_param('ERR_COR_P', 12, 2.0) ERR_CORR_D = bind_add_param('ERR_COR_D', 13, 2.8) AEROM_ENTRY_RATE = bind_add_param('ENTRY_RATE', 14, 60) AEROM_THR_LKAHD = bind_add_param('THR_LKAHD', 15, 1) AEROM_DEBUG = bind_add_param('DEBUG', 16, 0) AEROM_THR_MIN = bind_add_param('THR_MIN', 17, 0) AEROM_THR_BOOST = bind_add_param('THR_BOOST', 18, 50) AEROM_YAW_ACCEL = bind_add_param('YAW_ACCEL', 19, 1500) AEROM_LKAHD = bind_add_param('LKAHD', 20, 0.5) AEROM_PATH_SCALE = bind_add_param('PATH_SCALE', 21, 1.0) AEROM_BOX_WIDTH = bind_add_param('BOX_WIDTH', 22, 400) AEROM_STALL_THR = bind_add_param('STALL_THR', 23, 40) AEROM_STALL_PIT = bind_add_param('STALL_PIT', 24, -20) -- 25 was AEROM_KE_TC AEROM_KE_RUDD = bind_add_param('KE_RUDD', 26, 25) AEROM_KE_RUDD_LK = bind_add_param('KE_RUDD_LK', 27, 0.25) AEROM_ALT_ABORT = bind_add_param('ALT_ABORT',28,15) -- cope with old param values if AEROM_ANG_ACCEL:get() < 100 and AEROM_ANG_ACCEL:get() > 0 then AEROM_ANG_ACCEL:set_and_save(3000) end if AEROM_ANG_TC:get() > 1.0 then AEROM_ANG_TC:set_and_save(0.2) end ACRO_ROLL_RATE = Parameter("ACRO_ROLL_RATE") ACRO_YAW_RATE = Parameter('ACRO_YAW_RATE') ARSPD_FBW_MIN = Parameter("ARSPD_FBW_MIN") SCALING_SPEED = Parameter("SCALING_SPEED") GRAVITY_MSS = 9.80665 --[[ list of attributes that can be added to a path element --]] local path_attribs = { "roll_ref", "set_orient", "rate_override", "thr_boost", "pos_corr", "message", "shift_xy" } --[[ Aerobatic tricks on a switch support - allows for tricks to be initiated outside AUTO mode --]] -- 2nd param table for tricks on a switch local PARAM_TABLE_KEY2 = 71 local PARAM_TABLE_PREFIX2 = "TRIK" assert(param:add_table(PARAM_TABLE_KEY2, PARAM_TABLE_PREFIX2, 63), 'could not add param table2') -- add a parameter and bind it to a variable in table2 function bind_add_param2(name, idx, default_value) assert(param:add_param(PARAM_TABLE_KEY2, idx, name, default_value), string.format('could not add param %s', name)) return Parameter(PARAM_TABLE_PREFIX2 .. name) end local TRIK_ENABLE = bind_add_param2("_ENABLE", 1, 0) local TRICKS = nil local TRIK_SEL_FN = nil local TRIK_ACT_FN = nil local TRIK_COUNT = nil local function TrickDef(id, arg1, arg2, arg3, arg4) local self = {} self.id = id self.args = {arg1, arg2, arg3, arg4} return self end -- constrain a value between limits local function constrain(v, vmin, vmax) if v < vmin then v = vmin end if v > vmax then v = vmax end return v end local function sq(x) return x*x end if TRIK_ENABLE:get() > 0 then TRIK_SEL_FN = bind_add_param2("_SEL_FN", 2, 301) TRIK_ACT_FN = bind_add_param2("_ACT_FN", 3, 300) TRIK_COUNT = bind_add_param2("_COUNT", 4, 3) TRICKS = {} -- setup parameters for tricks local count = math.floor(constrain(TRIK_COUNT:get(),1,11)) for i = 1, count do local k = 5*i local prefix = string.format("%u", i) TRICKS[i] = TrickDef(bind_add_param2(prefix .. "_ID", k+0, i), bind_add_param2(prefix .. "_ARG1", k+1, 30), bind_add_param2(prefix .. "_ARG2", k+2, 0), bind_add_param2(prefix .. "_ARG3", k+3, 0), bind_add_param2(prefix .. "_ARG4", k+4, 0)) end gcs:send_text(0, string.format("Enabled %u aerobatic tricks", TRIK_COUNT:get())) end local NAV_TAKEOFF = 22 local NAV_WAYPOINT = 16 local NAV_SCRIPT_TIME = 42702 local MODE_AUTO = 10 local LOOP_RATE = 40 local DO_JUMP = 177 local k_throttle = 70 local NAME_FLOAT_RATE = 2 local TRIM_ARSPD_CM = Parameter("TRIM_ARSPD_CM") local last_id = 0 local current_task = nil local last_named_float_t = 0 local path_var = {} local function wrap_360(angle) local res = math.fmod(angle, 360.0) if res < 0 then res = res + 360.0 end return res end local function wrap_180(angle) local res = wrap_360(angle) if res > 180 then res = res - 360 end return res end local function wrap_pi(angle) local angle_deg = math.deg(angle) local angle_wrapped = wrap_180(angle_deg) return math.rad(angle_wrapped) end local function wrap_2pi(angle) local angle_deg = math.deg(angle) local angle_wrapped = wrap_360(angle_deg) return math.rad(angle_wrapped) end --[[ calculate an alpha for a first order low pass filter --]] local function calc_lowpass_alpha(dt, time_constant) local rc = time_constant/(math.pi*2) return dt/(dt+rc) end --[[ get the c.y element of a quaternion, which gives the projection of the vehicle y axis in the down direction This is equal to sin(roll)*cos(pitch) --]] local function get_quat_dcm_c_y(q) local q1 = q:q1() local q2 = q:q2() local q3 = q:q3() local q4 = q:q4() local q3q4 = q3 * q4 local q1q2 = q1 * q2 return 2*(q3q4 + q1q2) end --[[ get the c.y element of the DCM body to earth matrix, which gives the projection of the vehicle y axis in the down direction This is equal to sin(roll)*cos(pitch) --]] local function get_ahrs_dcm_c_y() return get_quat_dcm_c_y(ahrs:get_quaternion()) end -- a PI controller implemented as a Lua object local function PI_controller(kP,kI,iMax,min,max) -- the new instance. You can put public variables inside this self -- declaration if you want to local self = {} -- private fields as locals local _kP = kP or 0.0 local _kI = kI or 0.0 local _kD = kD or 0.0 local _iMax = iMax local _min = min local _max = max local _last_t = nil local _I = 0 local _P = 0 local _total = 0 local _counter = 0 local _target = 0 local _current = 0 -- update the controller. function self.update(target, current) local now = millis():tofloat() * 0.001 if not _last_t then _last_t = now end local dt = now - _last_t _last_t = now local err = target - current _counter = _counter + 1 local P = _kP * err if ((_total < _max and _total > _min) or (_total >= _max and err < 0) or (_total <= _min and err > 0)) then _I = _I + _kI * err * dt end if _iMax then _I = constrain(_I, -_iMax, iMax) end local I = _I local ret = P + I _target = target _current = current _P = P _total = ret return ret end -- reset integrator to an initial value function self.reset(integrator) _I = integrator end function self.set_I(I) _kI = I end function self.set_P(P) _kP = P end function self.set_Imax(Imax) _iMax = Imax end -- log the controller internals function self.log(name, add_total) -- allow for an external addition to total logger.write(name,'Targ,Curr,P,I,Total,Add','ffffff',_target,_current,_P,_I,_total,add_total) end -- return the instance return self end local function speed_controller(kP_param,kI_param, kFF_pitch_param, Imax, min, max) local self = {} local kFF_pitch = kFF_pitch_param local PI = PI_controller(kP_param:get(), kI_param:get(), Imax, min, max) function self.update(target, anticipated_pitch_rad) local current_speed = ahrs:get_velocity_NED():length() local throttle = PI.update(target, current_speed) local FF = math.sin(anticipated_pitch_rad)*kFF_pitch:get() PI.log("AESP", FF) return throttle + FF end function self.reset() PI.reset(0) local temp_throttle = self.update(ahrs:get_velocity_NED():length(), 0) local current_throttle = SRV_Channels:get_output_scaled(k_throttle) PI.reset(current_throttle-temp_throttle) end return self end local speed_PI = speed_controller(SPD_P, SPD_I, THR_PIT_FF, 100.0, 0.0, 100.0) function sgn(x) local eps = 0.000001 if (x > eps) then return 1.0 elseif x < eps then return -1.0 else return 0.0 end end local function get_wp_location(i) local m = mission:get_item(i) local loc = Location() loc:lat(m:x()) loc:lng(m:y()) loc:relative_alt(true) loc:terrain_alt(false) loc:origin_alt(false) loc:alt(math.floor(m:z()*100)) return loc end local function resolve_jump(i) local m = mission:get_item(i) while m:command() == DO_JUMP do i = math.floor(m:param1()) m = mission:get_item(i) end return i end --[[ Wrapper to construct a Vector3f{x, y, z} from (x, y, z) --]] local function makeVector3f(x, y, z) local vec = Vector3f() vec:x(x) vec:y(y) vec:z(z) return vec end --[[ get quaternion rotation between vector1 and vector2 with thanks to https://stackoverflow.com/questions/1171849/finding-quaternion-representing-the-rotation-from-one-vector-to-another --]] local function vectors_to_quat_rotation(vector1, vector2) local v1 = vector1:copy() local v2 = vector2:copy() v1:normalize() v2:normalize() local dot = v1:dot(v2) local a = v1:cross(v2) local w = 1.0 + dot local q = Quaternion() q:q1(w) q:q2(a:x()) q:q3(a:y()) q:q4(a:z()) q:normalize() return q end --[[ get path rate from two tangents and delta time --]] local function tangents_to_rate(t1, t2, dt) local q_delta = vectors_to_quat_rotation(t1, t2) local rate_rads = Vector3f() q_delta:to_axis_angle(rate_rads) rate_rads = rate_rads:scale(1.0/dt) return rate_rads end --[[ create a class that inherits from a base class --]] local function inheritsFrom(baseClass, _name) local new_class = { name = _name } local class_mt = { __index = new_class } function new_class:create() local newinst = {} setmetatable( newinst, class_mt ) return newinst end if nil ~= baseClass then setmetatable( new_class, { __index = baseClass } ) end return new_class end --[[ return a quaternion for a roll, pitch, yaw (321 euler sequence) attitude --]] function qorient(roll_deg, pitch_deg, yaw_deg) local q = Quaternion() q:from_euler(math.rad(roll_deg), math.rad(pitch_deg), math.rad(yaw_deg)) return q end --[[ rotate a vector by a quaternion --]] local function quat_earth_to_body(quat, v) local v = v:copy() quat:earth_to_body(v) return v end --[[ rotate a vector by a inverse quaternion --]] local function quat_body_to_earth(quat, v) local v = v:copy() quat:inverse():earth_to_body(v) return v end --[[ copy a quaternion --]] local function quat_copy(q) return q:inverse():inverse() end --[[ trajectory building blocks. We have two types of building blocks, roll blocks and path blocks. These are combined to give composite paths --]] --[[ roll component that goes through a fixed total angle at a fixed roll rate --]] local _roll_angle = inheritsFrom(nil, 'roll_angle') function _roll_angle:get_roll(t) if self.angle == nil then return 0 end return self.angle * t end function roll_angle(angle) local self = _roll_angle:create() if angle ~= 0 then self.angle = angle end return self end --[[ roll component that banks to _angle over AEROM_ENTRY_RATE degrees/s, then holds that angle, then banks back to zero at AEROM_ENTRY_RATE degrees/s --]] local _roll_angle_entry_exit = inheritsFrom(nil, "roll_angle_entry_exit") function _roll_angle_entry_exit:get_roll(t, time_s) local entry_s = math.abs(self.angle) / AEROM_ENTRY_RATE:get() local entry_t = entry_s / time_s if entry_t > 0.5 then entry_t = 0.5 end if t <= 0 then return 0 end if t < entry_t then return self.angle * t / entry_t end if t < 1.0 - entry_t then return self.angle end if self.angle == 0 or t >= 1.0 then return 0 end return (1.0 - ((t - (1.0 - entry_t)) / entry_t)) * self.angle end function roll_angle_entry_exit(angle) local self = _roll_angle_entry_exit:create() self.angle = angle return self end --[[ roll component that banks to _angle over AEROM_ENTRY_RATE degrees/s, then holds that angle --]] local _roll_angle_entry = inheritsFrom(nil, "roll_angle_entry") function _roll_angle_entry:get_roll(t, time_s) local entry_s = math.abs(self.angle) / AEROM_ENTRY_RATE:get() local entry_t = entry_s / time_s if entry_t > 0.5 then entry_t = 0.5 end if t < entry_t then return self.angle * t / entry_t end return self.angle end function roll_angle_entry(angle) local self = _roll_angle_entry:create() self.angle = angle return self end --[[ roll component that holds angle until the end of the subpath, then rolls back to 0 at the AEROM_ENTRY_RATE --]] local _roll_angle_exit = inheritsFrom(nil, "roll_angle_exit") function _roll_angle_exit:get_roll(t, time_s) local entry_s = math.abs(self.angle) / AEROM_ENTRY_RATE:get() local entry_t = entry_s / time_s if t < 1.0 - entry_t then return 0 end if self.angle == 0 then return 0 end return ((t - (1.0 - entry_t)) / entry_t) * self.angle end function roll_angle_exit(angle) local self = _roll_angle_exit:create() self.angle = angle return self end --[[ implement a sequence of rolls, specified as a list of {proportion, roll_angle} pairs --]] local _roll_sequence = inheritsFrom(nil, "roll_sequence") function _roll_sequence:get_roll(t) for i = 1, #self.seq do if t <= self.end_t[i] then local t2 = (t - self.start_t[i])/(self.seq[i][1]/self.total) return self.start_ang[i] + t2 * self.seq[i][2] end end -- we've gone past the end return self.start_ang[#self.seq] + self.seq[#self.seq][2] end function roll_sequence(seq) local self = _roll_sequence:create() self.seq = seq self.total = 0.0 self.end_t = {} self.start_t = {} self.start_ang = {} for i = 1, #seq do self.total = self.total + seq[i][1] end local t = 0.0 local angle = 0.0 for i = 1, #seq do self.start_t[i] = t self.start_ang[i] = angle angle = angle + seq[i][2] t = t + seq[i][1]/self.total self.end_t[i] = t end return self end --[[ given a path function get_pos() calculate the extents of the path along the X axis as a tuple --]] local function get_extents_x(obj) local p = obj:get_pos(0) local min_x = p:x() local max_x = min_x for t=0, 1, 0.02 do p = obj:get_pos(t) min_x = math.min(min_x, p:x()) max_x = math.max(max_x, p:x()) end return { min_x, max_x } end --[[ all path components inherit from PathComponent --]] local _PathComponent = inheritsFrom(nil) function _PathComponent:get_pos(t) return makeVector3f(0, 0, 0) end function _PathComponent:get_length() return 0 end function _PathComponent:get_final_orientation() return Quaternion() end function _PathComponent:get_roll_correction(t) return 0 end function _PathComponent:get_attribute(t, attrib) return self[attrib] end function _PathComponent:get_extents_x() if self.extents ~= nil then return self.extents end self.extents = get_extents_x(self) return self.extents end local function PathComponent() local self = _PathComponent:create() return self end --[[ path component that does a straight horizontal line --]] local _path_straight = inheritsFrom(_PathComponent, "path_straight") function _path_straight:get_pos(t) return makeVector3f(self.distance*t, 0, 0) end function _path_straight:get_length() return self.distance end function path_straight(distance) local self = _path_straight:create() self.distance = distance return self end --[[ path component that does a straight line then reverses direction --]] local _path_reverse = inheritsFrom(_PathComponent, "path_reverse") function _path_reverse:get_pos(t) if t < 0.5 then return makeVector3f(self.distance*t*2, 0, 0) else return makeVector3f(self.distance-(self.distance*(t-0.5)*2), 0, 0) end end function _path_reverse:get_length() return self.distance*2 end function path_reverse(distance) local self = _path_reverse:create() self.distance = distance return self end --[[ path component that aligns to within the aerobatic box --]] local _path_align_box = inheritsFrom(_PathComponent, "path_align_box") function _path_align_box:get_pos(t) return makeVector3f(self.distance*t, 0, 0) end function _path_align_box:get_length() return self.distance end function _path_align_box:set_next_extents(extents, start_pos, start_orientation) local box_half = AEROM_BOX_WIDTH:get()/2 local start_x = start_pos:x() local next_max_x = extents[2] if math.abs(math.deg(start_orientation:get_euler_yaw())) > 90 then -- we are on a reverse path self.distance = (box_half * self.alignment) + start_x - next_max_x else -- we are on a forward path self.distance = (box_half * self.alignment) - start_x - next_max_x end self.distance = math.max(self.distance, 0.01) end function path_align_box(alignment) local self = _path_align_box:create() self.distance = nil self.alignment = alignment return self end --[[ path component that aligns so the center of the next maneuver is centered within the aerobatic box --]] local _path_align_center = inheritsFrom(_PathComponent, "path_align_center") function _path_align_center:get_pos(t) return makeVector3f(self.distance*t, 0, 0) end function _path_align_center:get_length() return self.distance end function _path_align_center:set_next_extents(extents, start_pos, start_orientation) local start_x = start_pos:x() local next_mid_x = (extents[1]+extents[2])*0.5 if math.abs(math.deg(start_orientation:get_euler_yaw())) > 90 then -- we are on a reverse path self.distance = start_x - next_mid_x else -- we are on a forward path self.distance = - start_x - next_mid_x end self.distance = math.max(self.distance, 0.01) end function path_align_center() local self = _path_align_center:create() self.distance = nil return self end --[[ path component that does a vertical arc over a given angle --]] local _path_vertical_arc = inheritsFrom(_PathComponent, "path_vertical_arc") function _path_vertical_arc:get_pos(t) local t2ang = wrap_2pi(t * math.rad(self.angle)) return makeVector3f(math.abs(self.radius)*math.sin(t2ang), 0, -self.radius*(1.0 - math.cos(t2ang))) end function _path_vertical_arc:get_length() return math.abs(self.radius) * 2 * math.pi * math.abs(self.angle) / 360.0 end function _path_vertical_arc:get_final_orientation() local q = Quaternion() q:from_axis_angle(makeVector3f(0,1,0), sgn(self.radius)*math.rad(wrap_180(self.angle))) q:normalize() return q end function path_vertical_arc(radius, angle) local self = _path_vertical_arc:create() self.radius = radius self.angle = angle return self end --[[ path component that does a horizontal arc over a given angle --]] local _path_horizontal_arc = inheritsFrom(_PathComponent, "path_horizontal_arc") function _path_horizontal_arc:get_pos(t) local t2ang = t * math.rad(self.angle) return makeVector3f(math.abs(self.radius)*math.sin(t2ang), self.radius*(1.0 - math.cos(t2ang)), -self.height_gain*t) end function _path_horizontal_arc:get_length() local circumference = 2 * math.pi * math.abs(self.radius) local full_circle_height_gain = self.height_gain * 360.0 / math.abs(self.angle) local helix_length = math.sqrt(full_circle_height_gain*full_circle_height_gain + circumference*circumference) return helix_length * math.abs(self.angle) / 360.0 end function _path_horizontal_arc:get_final_orientation() local q = Quaternion() q:from_axis_angle(makeVector3f(0,0,1), sgn(self.radius)*math.rad(self.angle)) return q end --[[ roll correction for the rotation caused by height gain --]] function _path_horizontal_arc:get_roll_correction(t) if self.height_gain == 0 then return 0 end local gamma=math.atan(self.height_gain*(360/self.angle)/(2*math.pi*self.radius)) return -t*self.angle*math.sin(gamma) end function path_horizontal_arc(radius, angle, height_gain) local self = _path_horizontal_arc:create() self.radius = radius self.angle = angle self.height_gain = height_gain or 0 return self end --[[ path component that does a cylinder for a barrel roll --]] local _path_cylinder = inheritsFrom(_PathComponent, "path_cylinder") function _path_cylinder:get_pos(t) local t2ang = t * self.num_spirals * math.pi * 2 local v = makeVector3f(self.length*t, math.abs(self.radius)*math.sin(t2ang+math.pi), -math.abs(self.radius)*(1.0 - math.cos(t2ang))) local qrot = Quaternion() qrot:from_axis_angle(makeVector3f(0,0,1), (0.5*math.pi)-self.gamma) v = quat_earth_to_body(qrot, v) if self.radius < 0 then -- mirror for reverse radius v:y(-v:y()) end return v end function _path_cylinder:get_length() local circumference = 2 * math.pi * math.abs(self.radius) local length_per_spiral = self.length / self.num_spirals local helix_length = math.sqrt(length_per_spiral*length_per_spiral + circumference*circumference) return helix_length * self.num_spirals end --[[ roll correction for the rotation caused by the path --]] function _path_cylinder:get_roll_correction(t) return sgn(self.radius)*t*360*math.sin(self.gamma)*self.num_spirals end function path_cylinder(radius, length, num_spirals) local self = _path_cylinder:create() self.radius = radius self.length = length self.num_spirals = num_spirals self.gamma = math.atan((length/num_spirals)/(2*math.pi*math.abs(radius))) return self end --[[ a Path has the methods of both RollComponent and PathComponent allowing for a complete description of a subpath --]] local _Path = inheritsFrom(nil) function _Path:get_roll(t, time_s) return wrap_180(self.roll_component:get_roll(t, time_s)) end function _Path:get_roll_correction(t) return self.path_component:get_roll_correction(t) end function _Path:get_pos(t) return self.path_component:get_pos(t) end function _Path:get_length() return self.path_component:get_length() end function _Path:get_final_orientation() return self.path_component:get_final_orientation() end function _Path:get_attribute(t, attrib) return self[attrib] end function _Path:set_next_extents(extents, start_pos, start_orientation) self.path_component:set_next_extents(extents, start_pos, start_orientation) end local function Path(path_component, roll_component) local self = _Path:create() self.name = string.format("%s|%s", path_component.name, roll_component.name) assert(path_component) assert(roll_component) self.path_component = path_component self.roll_component = roll_component return self end --[[ componse multiple sub-paths together to create a full trajectory --]] local _path_composer = inheritsFrom(nil) -- return the subpath with index i. Used to cope with two ways of calling path_composer function _path_composer:subpath(i) if i == self.cache_i then return self.cache_sp end self.cache_i = i local sp = self.subpaths[i] if sp.name then -- we are being called with a list of Path objects self.cache_sp = sp else -- we are being called with a list function/argument tuples local args = self.subpaths[i][2] self.cache_sp = self.subpaths[i][1](args[1], args[2], args[3], args[4], self.start_pos[i], self.start_orientation[i]) -- copy over path attributes for k, v in pairs(path_attribs) do self.cache_sp[v] = self.subpaths[i][v] end end return self.cache_sp end function _path_composer:end_time(i) local proportion = self.lengths[i] / self.total_length return self.start_time[i] + proportion end function _path_composer:get_subpath_t(t) if self.last_subpath_t[1] == t then -- use cached value return self.last_subpath_t[2], self.last_subpath_t[3] end local i = 1 while t >= self:end_time(i) and i < self.num_sub_paths do i = i + 1 end local proportion = self.lengths[i]/self.total_length local subpath_t = (t - self.start_time[i]) / proportion self.last_subpath_t = { t, subpath_t, i } local sp = self:subpath(i) if i > self.highest_i and t < 1.0 and t > 0 then self.highest_i = i if sp.message ~= nil then gcs:send_text(0, sp.message) end if AEROM_DEBUG:get() > 0 then gcs:send_text(0, string.format("starting %s[%d] %s", self.name, i, sp.name)) end end return subpath_t, i end -- return position at time t function _path_composer:get_pos(t) local subpath_t, i = self:get_subpath_t(t) local sp = self:subpath(i) return quat_earth_to_body(self.start_orientation[i], sp:get_pos(subpath_t)) + self.start_pos[i] end -- return angle for the composed path at time t function _path_composer:get_roll(t, time_s) local subpath_t, i = self:get_subpath_t(t) local speed = target_groundspeed() local sp = self:subpath(i) local angle = sp:get_roll(subpath_t, self.lengths[i]/speed) return angle + self.start_angle[i] end function _path_composer:get_roll_correction(t) local subpath_t, i = self:get_subpath_t(t) local sp = self:subpath(i) return sp:get_roll_correction(subpath_t) + (self.start_roll_correction[i] or 0) end function _path_composer:get_length() return self.total_length end function _path_composer:get_final_orientation() return self.final_orientation end function _path_composer:get_attribute(t, attrib) local subpath_t, i = self:get_subpath_t(t) local sp = self:subpath(i) return sp[attrib] or sp:get_attribute(subpath_t, attrib) end function _path_composer:get_extents_x() if self.extents ~= nil then return self.extents end self.extents = get_extents_x(self) return self.extents end --[[ get the time that the next segment starts --]] function _path_composer:get_next_segment_start(t) local subpath_t, i = self:get_subpath_t(t) local sp = self:subpath(i) if sp.get_next_segment_start ~= nil then return self.start_time[i] + (sp:get_next_segment_start(subpath_t) * (self:end_time(i) - self.start_time[i])) end return self:end_time(i) end local function path_composer(name, subpaths) local self = _path_composer:create() self.name = name self.subpaths = subpaths self.lengths = {} self.start_time = {} self.start_orientation = {} self.start_pos = {} self.start_angle = {} self.start_roll_correction = {} self.total_length = 0 self.num_sub_paths = #subpaths self.last_subpath_t = { -1, 0, 0 } self.highest_i = 0 local orientation = Quaternion() local pos = makeVector3f(0,0,0) local angle = 0 local roll_correction = 0 local speed = target_groundspeed() local cache_i = -1 local cache_sp = nil for i = 1, self.num_sub_paths do -- accumulate orientation, position and angle self.start_orientation[i] = quat_copy(orientation) self.start_pos[i] = pos:copy() self.start_angle[i] = angle if roll_correction ~= 0 then self.start_roll_correction[i] = roll_correction end local sp = self:subpath(i) self.lengths[i] = sp:get_length() if self.lengths[i] == nil and i < self.num_sub_paths then local sp2 = self:subpath(i+1) local next_extents = sp2:get_extents_x() if next_extents ~= nil then sp:set_next_extents(next_extents, self.start_pos[i], self.start_orientation[i]) self.lengths[i] = sp:get_length() -- solidify this subpath now that it has its length calculated self.subpaths[i] = sp end end self.total_length = self.total_length + self.lengths[i] local spos = quat_earth_to_body(orientation, sp:get_pos(1.0)) pos = pos + spos orientation = sp:get_final_orientation() * orientation orientation:normalize() angle = angle + sp:get_roll(1.0, self.lengths[i]/speed) roll_correction = roll_correction + sp:get_roll_correction(1.0) if sp.set_orient ~= nil then -- override orientation at this point in the sequence orientation = sp.set_orient end if sp.roll_ref ~= nil then local q = Quaternion() q:from_axis_angle(makeVector3f(1,0,0), math.rad(sp.roll_ref)) orientation = orientation * q orientation:normalize() end end -- get our final orientation, including roll self.final_orientation = quat_copy(orientation) local q = Quaternion() q:from_axis_angle(makeVector3f(1,0,0), math.rad(wrap_180(angle))) self.final_orientation = q * self.final_orientation -- work out the proportion of the total time we will spend in each sub path local total_time = 0 for i = 1, self.num_sub_paths do self.start_time[i] = total_time local proportion = self.lengths[i]/self.total_length total_time = total_time + proportion end return self end --[[ make a list of Path() objects from a list of PathComponent, RollComponent pairs --]] function make_paths(name, paths) local p = {} for i = 1, #paths do if paths[i][2] == nil then p[i] = paths[i][1] else p[i] = Path(paths[i][1], paths[i][2]) end -- copy over path attributes for k, v in pairs(path_attribs) do if paths[i][v] ~= nil then p[i][v] = paths[i][v] end end end return path_composer(name, p) end --[[ composed trajectories, does as individual aerobatic maneuvers --]] function climbing_circle(radius, height, bank_angle, arg4) return make_paths("climbing_circle", { { path_horizontal_arc(radius, 360, height), roll_angle_entry_exit(bank_angle) }, }) end function half_climbing_circle(radius, height, bank_angle, arg4) return make_paths("half_climbing_circle", { { path_horizontal_arc(radius, 180, height), roll_angle_entry_exit(bank_angle) }, }) end function partial_circle(radius, bank_angle, angle) return make_paths("partial_circle", { { path_horizontal_arc(radius, angle, 0), roll_angle_entry_exit(bank_angle) }, }) end function loop(radius, bank_angle, num_loops, arg4) if not num_loops or num_loops <= 0 then num_loops = 1 end return make_paths("loop", { { path_vertical_arc(radius, 360*num_loops), roll_angle_entry_exit(bank_angle) }, }) end function straight_roll(length, num_rolls, arg3, arg4) return make_paths("straight_roll", { { path_straight(length), roll_angle(num_rolls*360) }, }) end --[[ fly straight until we are distance meters from the composite path origin in the maneuver frame along the X axis. If we are already past that position then return immediately --]] function straight_align(distance, arg2, arg3, arg4, start_pos, start_orientation) local d2 = distance - start_pos:x() local v = quat_earth_to_body(start_orientation, makeVector3f(d2, 0, 0)) local len = math.max(v:x(),0.01) return make_paths("straight_align", { { path_straight(len), roll_angle(0) }, }) end --[[ fly straight so that the next maneuver in the sequence ends at the given proportion of the aerobatic box --]] function align_box(alignment, arg2, arg3, arg4) return Path(path_align_box(alignment), roll_angle(0)) end --[[ fly straight so that the next maneuver in the sequence is centered in the aerobatic box --]] function align_center(arg1, arg2, arg3, arg4) return Path(path_align_center(), roll_angle(0)) end function immelmann_turn(r, arg2, arg3, arg4) local rabs = math.abs(r) return make_paths("immelmann_turn", { { path_vertical_arc(r, 180), roll_angle(0) }, { path_straight(rabs), roll_angle(180) }, }) end -- immelmann with max roll rate function immelmann_turn_fast(r, arg2, arg3, arg4) local rabs = math.abs(r) local roll_time = 180.0 / ACRO_ROLL_RATE:get() local roll_dist = target_groundspeed() * roll_time return make_paths("immelmann_turn_fast", { { path_vertical_arc(r, 180), roll_angle(0) }, { path_straight(roll_dist), roll_angle(180) }, }) end function humpty_bump(r, h, arg3, arg4) assert(h >= 2*r) local rabs = math.abs(r) return make_paths("humpty_bump", { { path_vertical_arc(r, 90), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(180) }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_vertical_arc(-r, 180), roll_angle(0) }, { path_straight(h-2*rabs), roll_angle(0) }, { path_vertical_arc(-r, 90), roll_angle(0) }, { path_straight(2*rabs), roll_angle(0) }, }) end function laydown_humpty(r, h, arg3, arg4) assert(h >= 2*r) local rabs = math.abs(r) return make_paths("laydown_humpty", { { path_vertical_arc(r, 45), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(-90), roll_ref=90 }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_vertical_arc(r, 180), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(90), roll_ref=-90 }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_vertical_arc(-r, 45), roll_angle(0), roll_ref=180}, }) end function split_s(r, arg2, arg3, arg4) local rabs = math.abs(r) return make_paths("split_s", { { path_straight(rabs/2), roll_angle(180) }, { path_vertical_arc(-r, 180), roll_angle(0) }, }) end function upline_45(r, height_gain, arg3, arg4) --local h = (height_gain - 2*r*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45)) local h = (height_gain - (2 * r) + (2 * r * math.cos(math.rad(45)))) / math.cos(math.rad(45)) assert(h >= 0) return make_paths("upline_45", { { path_vertical_arc(r, 45), roll_angle(0) }, { path_straight(h), roll_angle(0) }, { path_vertical_arc(-r, 45), roll_angle(0) }, }) end function upline_20(r, height_gain, arg3, arg4) local h = (height_gain - 2*r*(1.0-math.cos(math.rad(20))))/math.sin(math.rad(20)) assert(h >= 0) return make_paths("upline_45", { { path_vertical_arc(r, 20), roll_angle(0) }, { path_straight(h), roll_angle(0) }, { path_vertical_arc(-r, 20), roll_angle(0) }, }) end function downline_45(r, height_loss, arg3, arg4) local h = (height_loss - 2*r*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45)) assert(h >= 0) return make_paths("downline_45", { { path_vertical_arc(-r, 45), roll_angle(0) }, { path_straight(h), roll_angle(0) }, { path_vertical_arc(r, 45), roll_angle(0) }, }) end function rolling_circle(radius, num_rolls, arg3, arg4) return make_paths("rolling_circle", { { path_horizontal_arc(radius, 360), roll_angle(360*num_rolls), thr_boost=true }, }) end function barrel_roll(radius, length, num_spirals, arg4) local gamma_deg = math.deg(math.atan((length/num_spirals)/(2*math.pi*math.abs(radius)))) local speed = target_groundspeed() local bank = math.deg(math.atan((speed*speed) / (radius * GRAVITY_MSS))) local radius2 = radius/(1.0 - math.cos(math.rad(90-gamma_deg))) return make_paths("barrel_roll", { { path_horizontal_arc(-radius2, 90-gamma_deg, 0), roll_angle_entry_exit(-bank) }, { path_cylinder(radius, length, num_spirals), roll_angle(0) }, { path_horizontal_arc(radius2, 90-gamma_deg, 0), roll_angle_entry_exit(bank) }, }) end function side_step(displacement, length, arg3, arg4) local speed = target_groundspeed() local radius = (displacement*displacement + length*length)/(4*displacement) local angle = math.deg(2*math.atan(displacement, length)) local sign = sgn(displacement) local bank = math.deg(math.atan((speed*speed) / (radius * GRAVITY_MSS))) displacement = math.abs(displacement) return make_paths("side_step",{ {path_horizontal_arc(sign*radius, angle, 0), roll_angle_entry_exit(sign*bank)}, {path_horizontal_arc(-sign*radius, angle, 0) , roll_angle_entry_exit(-sign*bank)}, }) end function straight_flight(length, bank_angle, arg3, arg4) return make_paths("straight_flight", { { path_straight(length), roll_angle_entry_exit(bank_angle) }, }) end function straight_hold(length, bank_angle, arg3, arg4) return make_paths("straight_hold", { { path_straight(length), roll_angle_entry(bank_angle) }, }) end function scale_figure_eight(r, bank_angle, arg3, arg4) local rabs = math.abs(r) return make_paths("scale_figure_eight", { { path_straight(rabs), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) }, { path_horizontal_arc(-r, 360), roll_angle_entry_exit(-bank_angle) }, { path_horizontal_arc(r, 270), roll_angle_entry_exit(bank_angle) }, { path_straight(3*rabs), roll_angle(0) }, }) end function figure_eight(r, bank_angle, arg3, arg4) local rabs = math.abs(r) return make_paths("figure_eight", { { path_straight(rabs*math.sqrt(2)), roll_angle(0) }, { path_horizontal_arc(r, 225), roll_angle_entry_exit(bank_angle) }, { path_straight(2*rabs), roll_angle(0) }, { path_horizontal_arc(-r, 270), roll_angle_entry_exit(-bank_angle) }, { path_straight(2*rabs), roll_angle(0) }, { path_horizontal_arc(r, 45), roll_angle_entry_exit(bank_angle) }, }) end --[[ perform a rudder over maneuver --]] function rudder_over(_direction, _min_speed) local self = {} local direction = _direction local min_speed = _min_speed local reached_speed = false local kick_started = false local pitch2_done = false local descent_done = false local target_q = nil local initial_q = nil local last_t = nil local initial_z = nil local desired_direction = nil --[[ the update() method is called during the rudder over, it should return true when the maneuver is completed --]] function self.update(path, t, target_speed) if descent_done then -- we're all done return true end local ahrs_quat = ahrs:get_quaternion() local ahrs_pos = ahrs:get_relative_position_NED_origin() local ahrs_gyro = ahrs:get_gyro() local now = millis():tofloat() * 0.001 local pitch_threshold = 60.0 if target_q == nil then -- initialising initial_z = ahrs_pos:z() target_q = quat_copy(ahrs_quat) initial_q = quat_copy(target_q) last_t = now end local dt = now - last_t last_t = now local error_quat = ahrs_quat:inverse() * target_q local rate_rads = Vector3f() error_quat:to_axis_angle(rate_rads) local tc = ROLL_CORR_TC:get() local rate_dps = rate_rads:scale(math.deg(1)/tc) -- use user set throttle for achieving the stall local throttle = AEROM_STALL_THR:get() local pitch_deg = math.deg(ahrs:get_pitch()) if reached_speed and not kick_started and math.abs(math.deg(ahrs_gyro:z())) > ACRO_YAW_RATE:get()/3 then kick_started = true end if kick_started then -- when we have established some yaw rate cut the throttle to minimum throttle = AEROM_THR_MIN:get() end vehicle:set_target_throttle_rate_rpy(throttle, rate_dps:x(), rate_dps:y(), rate_dps:z()) log_pose('POSM', ahrs_pos, ahrs:get_quaternion()) log_pose('POST', ahrs_pos, target_q) local current_speed_up = -ahrs:get_velocity_NED():z() if not reached_speed and current_speed_up <= min_speed then reached_speed = true end if not reached_speed then return false end -- integrate desired attitude through yaw local q_rate_rads = makeVector3f(0,0,ahrs_gyro:z()) if pitch2_done then -- stop adding yaw q_rate_rads:z(0) end local rotation = Quaternion() rotation:from_angular_velocity(q_rate_rads, dt) target_q = target_q * rotation target_q:normalize() --[[ override rudder to maximum, basing PWM on the MIN/MAX of the channel according to the desired direction --]] if desired_direction == nil then desired_direction = direction if desired_direction == 0 then local c_y = get_ahrs_dcm_c_y() if c_y > 0 then desired_direction = 1 else desired_direction = -1 end end end if not pitch2_done then vehicle:set_rudder_offset(desired_direction * 100, false) else vehicle:set_rudder_offset(0, true) end if not kick_started then return false end -- see if we are nose down if kick_started and pitch_deg < AEROM_STALL_PIT:get() and not pitch2_done then -- lock onto a descent path pitch2_done = true target_q = initial_q * qorient(0, 0, 180) --[[ correct the attitude to the opposite correction that we had at the start of the slowdown, so we fight the wind on the way down --]] local error_q = initial_q:inverse() * qorient(0, 90, math.deg(initial_q:get_euler_yaw())) local error_pitch = error_q:get_euler_pitch() local error_yaw = error_q:get_euler_yaw() target_q = target_q * qorient(0, math.deg(-2*error_pitch), math.deg(2*error_yaw)) target_q:normalize() return false end if not pitch2_done or ahrs_pos:z() < initial_z then -- haven't finished the descent return false end -- all done, update state descent_done = true path_var.tangent = path_var.tangent:scale(-1) path_var.path_t = path:get_next_segment_start(t) path_var.accumulated_orientation_rel_ef = path_var.accumulated_orientation_rel_ef * qorient(0,0,180) path_var.last_time = now path_var.last_ang_rate_dps = ahrs_gyro:scale(math.deg(1)) path_var.pos = rotate_path(path, path_var.path_t, path_var.initial_ori, path_var.initial_ef_pos) -- ensure that the path will move fwd on the next step path_var.pos:z(path_var.pos:z()-10) return false end return self end --[[ stall turn is not really correct, as we don't fully stall. Needs to be reworked --]] function stall_turn(radius, height, direction, min_speed) local h = height - radius assert(h >= 0) return make_paths("stall_turn", { { path_vertical_arc(radius, 90), roll_angle(0) }, { path_straight(h), roll_angle(0) }, { path_reverse(h/4), roll_angle(0), rate_override=rudder_over(direction,min_speed), set_orient=qorient(0,-90,0) }, { path_straight(h), roll_angle(0), pos_corr=0.5, shift_xy=true }, { path_vertical_arc(-radius, 90), roll_angle(0), set_orient=qorient(0,0,180) }, }) end function half_cuban_eight(r, arg2, arg3, arg4) local rabs = math.abs(r) return make_paths("half_cuban_eight", { { path_straight(2*rabs*math.sqrt(2)), roll_angle(0) }, { path_vertical_arc(r, 225), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(180) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_vertical_arc(-r, 45), roll_angle(0) }, }) end function cuban_eight(r, arg2, arg3, arg4) local rabs = math.abs(r) return make_paths("cuban_eight", { { path_straight(rabs*math.sqrt(2)), roll_angle(0) }, { path_vertical_arc(r, 225), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(180) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_vertical_arc(-r, 270), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(180) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_vertical_arc(r, 45), roll_angle(0) }, }) end function half_reverse_cuban_eight(r, arg2, arg3, arg4) local rabs = math.abs(r) return make_paths("half_reverse_cuban_eight", { { path_vertical_arc(r, 45), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(180) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_vertical_arc(-r, 225), roll_angle(0) }, }) end function horizontal_rectangle(total_length, total_width, r, bank_angle) local l = total_length - 2*r local w = total_width - 2*r return make_paths("horizontal_rectangle", { { path_straight(0.5*l), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle)}, { path_straight(w), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) }, { path_straight(l), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) }, { path_straight(w), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) }, { path_straight(0.5*l), roll_angle(0) }, }) end function vertical_aerobatic_box(total_length, total_width, r, bank_angle) local l = total_length - 2*r local w = total_width - 2*r return make_paths("vertical_aerobatic_box", { { path_straight(0.5*l), roll_angle_entry(bank_angle) }, { path_vertical_arc(r, 90), roll_angle(0) }, { path_straight(w), roll_angle(0) }, { path_vertical_arc(r, 90), roll_angle(0) }, { path_straight(l), roll_angle(0) }, { path_vertical_arc(r, 90), roll_angle(0) }, { path_straight(w), roll_angle(0) }, { path_vertical_arc(r, 90), roll_angle(0) }, { path_straight(0.5*l), roll_angle_exit(-bank_angle) }, }) end --[[ a multi-point roll - length = total length of straight flight - N = number of points of roll for full 360 - hold_frac = proportion of each segment to hold attitude, will use 0.2 if 0 - num_points = number of points of the N point roll to do, will use N if 0 Note that num_points can be greater than N, for example do 6 points of a 4 point roll, resulting in inverted flight --]] function multi_point_roll(length, N, hold_frac, num_points) if hold_frac <= 0 then hold_frac = 0.2 end if num_points <= 0 then num_points = N end --[[ construct a roll sequence to use over the full length --]] local seq = {} local roll_frac = 1.0 - hold_frac for i = 1, num_points do seq[#seq+1] = { roll_frac, 360 / N } if i < num_points then seq[#seq+1] = { hold_frac, 0 } end end return make_paths("multi_point_roll", {{ path_straight(length), roll_sequence(seq) }}) end function eight_point_roll(length, arg2, arg3, arg4) return multi_point_roll(length, 8, 0.5) end function procedure_turn(radius, bank_angle, step_out, arg4) local rabs = math.abs(radius) return make_paths("procedure_turn", { { path_horizontal_arc(radius, 90), roll_angle_entry_exit(bank_angle) }, { path_straight(step_out), roll_angle(0) }, { path_horizontal_arc(-radius, 270), roll_angle_entry_exit(-bank_angle) }, { path_straight(3*rabs), roll_angle(0) }, }) end --------------------------------------------------- --[[ target speed is taken as max of target airspeed and current 3D velocity at the start of the maneuver --]] function target_groundspeed() return math.max(ahrs:get_EAS2TAS()*TRIM_ARSPD_CM:get()*0.01, ahrs:get_velocity_NED():length()) end --[[ get ground course from AHRS --]] function get_ground_course_deg() local vned = ahrs:get_velocity_NED() return wrap_180(math.deg(math.atan(vned:y(), vned:x()))) end --args: -- path_f: path function returning position -- t: normalised [0, 1] time -- arg1, arg2: arguments for path function -- orientation: maneuver frame orientation --returns: requested position, angle and speed in maneuver frame function rotate_path(path_f, t, orientation, offset) local t = constrain(t, 0, 1) local point = path_f:get_pos(t) local angle = path_f:get_roll(t) local roll_correction = path_f:get_roll_correction(t) local attrib = {} for k, v in pairs(path_attribs) do attrib[v] = path_f:get_attribute(t, v) end point = point + path_var.path_shift local point = quat_earth_to_body(orientation, point) local scale = AEROM_PATH_SCALE:get() point = point:scale(math.abs(scale)) if scale < 0 then -- we need to mirror the path point:y(-point:y()) roll_correction = -roll_correction angle = -angle -- compensate path orientation for the mirroring local orient = orientation:inverse() point = quat_body_to_earth((orient * orient), point) end return point+offset, math.rad(angle+roll_correction), attrib end --Given vec1, vec2, returns an (rotation axis, angle) tuple that rotates vec1 to be parallel to vec2 --If vec1 and vec2 are already parallel, returns a zero vector and zero angle --Note that the rotation will not be unique. function vectors_to_rotation(vector1, vector2) local axis = vector1:cross(vector2) if axis:length() < 0.00001 then local vec = Vector3f() vec:x(1) return vec, 0 end axis:normalize() local angle = vector1:angle(vector2) return axis, angle end --returns Quaternion function vectors_to_rotation_w_roll(vector1, vector2, roll) local axis, angle = vectors_to_rotation(vector1, vector2) local vector_rotation = Quaternion() vector_rotation:from_axis_angle(axis, angle) local roll_rotation = Quaternion() roll_rotation:from_euler(roll, 0, 0) local total_rot = vector_rotation*roll_rotation return to_axis_and_angle(total_rot) end --Given vec1, vec2, returns an angular velocity tuple that rotates vec1 to be parallel to vec2 --If vec1 and vec2 are already parallel, returns a zero vector and zero angle function vectors_to_angular_rate(vector1, vector2, time_constant) local axis, angle = vectors_to_rotation(vector1, vector2) local angular_velocity = angle/time_constant return axis:scale(angular_velocity) end function vectors_to_angular_rate_w_roll(vector1, vector2, time_constant, roll) local axis, angle = vectors_to_rotation_w_roll(vector1, vector2, roll) local angular_velocity = angle/time_constant return axis:scale(angular_velocity) end -- convert a quaternion to axis angle form function to_axis_and_angle(quat) local axis_angle = Vector3f() quat:to_axis_angle(axis_angle) local angle = axis_angle:length() if angle < 0.00001 then return makeVector3f(1.0, 0.0, 0.0), 0.0 end return axis_angle:scale(1.0/angle), angle end --projects x onto the othogonal subspace of span(unit_v) function ortho_proj(x, unit_v) local temp_x = unit_v:cross(x) return unit_v:cross(temp_x) end -- log a pose from position and quaternion attitude function log_pose(logname, pos, quat) logger.write(logname, 'px,py,pz,q1,q2,q3,q4,r,p,y','ffffffffff', pos:x(), pos:y(), pos:z(), quat:q1(), quat:q2(), quat:q3(), quat:q4(), math.deg(quat:get_euler_roll()), math.deg(quat:get_euler_pitch()), math.deg(quat:get_euler_yaw())) end --[[ check if a number is Nan. --]] function isNaN(value) -- NaN is lua is not equal to itself return value ~= value end function Vec3IsNaN(v) return isNaN(v:x()) or isNaN(v:y()) or isNaN(v:z()) end function qIsNaN(q) return isNaN(q:q1()) or isNaN(q:q2()) or isNaN(q:q3()) or isNaN(q:q4()) end --[[ return the body y projection down, this is the c.y element of the equivalent rotation matrix --]] function quat_projection_ground_plane(q) local q1q2 = q:q1() * q:q2() local q3q4 = q:q3() * q:q4() return 2.0 * (q3q4 + q1q2) end --[[ calculate rudder offset --]] function calculate_rudder_offset(ahrs_quat, ahrs_gyro, airspeed_constrained) --[[ look ahead for what our y projection will be at AEROM_KE_RUDD_LK seconds forward in time --]] local qchange = Quaternion() qchange:from_angular_velocity(ahrs_gyro, -AEROM_KE_RUDD_LK:get()) local qnew = qchange * ahrs_quat local airspeed_scaling = SCALING_SPEED:get()/airspeed_constrained local y_projection = get_quat_dcm_c_y(qnew:inverse()) local rudder_ofs = -y_projection * AEROM_KE_RUDD:get() * sq(airspeed_scaling) rudder_ofs = constrain(rudder_ofs, -100, 100) return rudder_ofs end path_var.count = 0 function do_path() local now = millis():tofloat() * 0.001 local ahrs_pos_NED = ahrs:get_relative_position_NED_origin() local ahrs_pos = ahrs:get_position() local ahrs_gyro = ahrs:get_gyro() local ahrs_velned = ahrs:get_velocity_NED() local ahrs_airspeed = ahrs:airspeed_estimate() --[[ ahrs_quat is the quaterion which when used with quat_earth_to_body() rotates a vector from earth to body frame. It needs to be the inverse of ahrs:get_quaternion() --]] local ahrs_quat = ahrs:get_quaternion():inverse() path_var.count = path_var.count + 1 local target_dt = 1.0/LOOP_RATE local path = current_task.fn if not current_task.started then local initial_yaw_deg = current_task.initial_yaw_deg current_task.started = true local speed = target_groundspeed() path_var.target_speed = speed path_var.length = path:get_length() * math.abs(AEROM_PATH_SCALE:get()) path_var.total_rate_rads_ef = makeVector3f(0.0, 0.0, 0.0) --assuming constant velocity path_var.total_time = path_var.length/speed --deliberately only want yaw component, because the maneuver should be performed relative to the earth, not relative to the initial orientation path_var.initial_ori = Quaternion() path_var.initial_ori:from_euler(0, 0, math.rad(initial_yaw_deg)) path_var.initial_ori = path_var.initial_ori path_var.initial_ori:normalize() path_var.initial_ef_pos = ahrs_pos_NED:copy() path_var.start_pos = ahrs_pos:copy() path_var.path_int = path_var.start_pos:copy() speed_PI.reset() path_var.accumulated_orientation_rel_ef = path_var.initial_ori path_var.time_correction = 0.0 path_var.filtered_angular_velocity = Vector3f() path_var.last_time = now - 1.0/LOOP_RATE path_var.last_ang_rate_dps = ahrs_gyro:scale(math.deg(1)) path_var.path_t = 0.0 path_var.pos = path_var.initial_ef_pos:copy() path_var.roll = 0.0 path_var.last_shift_xy = nil path_var.path_shift = Vector3f() path_var.ss_angle = 0.0 path_var.ss_angle_filt = 0.0 -- get initial tangent local p1, r1 = rotate_path(path, path_var.path_t + 0.1/(path_var.total_time*LOOP_RATE), path_var.initial_ori, path_var.initial_ef_pos) path_var.tangent = p1 - path_var.pos return true end local vel_length = ahrs_velned:length() local actual_dt = now - path_var.last_time if actual_dt < 0.25 / LOOP_RATE then -- the update has been executed too soon return true end path_var.last_time = now local local_n_dt = (1.0/LOOP_RATE)/path_var.total_time if path_var.path_t + local_n_dt > 1.0 then -- all done return false end -- airspeed, assume we don't go below min local airspeed_constrained = math.max(ARSPD_FBW_MIN:get(), ahrs_airspeed) --[[ calculate positions and angles at previous, current and next time steps --]] local p0 = path_var.pos:copy() local r0 = path_var.roll local p1, r1, attrib = rotate_path(path, path_var.path_t + local_n_dt, path_var.initial_ori, path_var.initial_ef_pos) local current_measured_pos_ef = ahrs_pos_NED:copy() if attrib.rate_override ~= nil then if not attrib.rate_override.update(path, path_var.path_t + local_n_dt, path_var.target_speed) then -- not done yet path_var.pos = current_measured_pos_ef return true end end --[[ see if this path element has a shift_xy attribute --]] local shift_xy = attrib.shift_xy if shift_xy and not path_var.last_shift_xy then --[[ we have entered a new sub-element with a shift_xy --]] local curpos_mf = quat_body_to_earth(path_var.initial_ori, current_measured_pos_ef) local pathpos_mf = quat_body_to_earth(path_var.initial_ori, p1) local shift = curpos_mf - pathpos_mf shift:z(0) path_var.path_shift = path_var.path_shift + shift local shift_ef = quat_earth_to_body(path_var.initial_ori, shift) p1 = p1 + shift_ef p0:y(p1:y()) p0:x(p1:x()) end path_var.last_shift_xy = shift_xy --[[ get tangents to the path --]] local tangent1_ef = path_var.tangent:copy() local tangent2_ef = p1 - p0 local tv_unit = tangent2_ef:copy() if tv_unit:length() < 0.00001 then gcs:send_text(0, string.format("path not advancing %f", tv_unit:length())) end tv_unit:normalize() --[[ use actual vehicle velocity to calculate how far along the path we have progressed --]] local v = ahrs_velned:copy() local path_dist = v:dot(tv_unit)*actual_dt if path_dist < 0 then gcs:send_text(0, string.format("aborting %.2f at %d tv=(%.2f,%.2f,%.2f) vx=%.2f adt=%.2f", path_dist, path_var.count, tangent2_ef:x(), tangent2_ef:y(), tangent2_ef:z(), v:x(), actual_dt)) return false end local path_t_delta = constrain(path_dist/path_var.length, 0.2*local_n_dt, 4*local_n_dt) --[[ recalculate the current path position and angle based on actual delta time --]] local p1, r1, attrib = rotate_path(path, constrain(path_var.path_t + path_t_delta, 0, 1), path_var.initial_ori, path_var.initial_ef_pos) local last_path_t = path_var.path_t path_var.path_t = path_var.path_t + path_t_delta -- tangents needs to be recalculated tangent2_ef = p1 - p0 tv_unit = tangent2_ef:copy() tv_unit:normalize() -- error in position versus current point on the path local pos_error_ef = current_measured_pos_ef - p1 --[[ calculate a time correction. We first get the projection of the position error onto the track. This tells us how far we are ahead or behind on the track --]] local path_dist_err_m = tv_unit:dot(pos_error_ef) -- normalize against the total path length local path_err_t = path_dist_err_m / path_var.length -- don't allow the path to go backwards in time, or faster than twice the actual rate path_err_t = constrain(path_err_t, -0.9*path_t_delta, 2*path_t_delta) -- correct time to bring us back into sync path_var.path_t = path_var.path_t + TIME_CORR_P:get() * path_err_t -- get the path again with the corrected time p1, r1, attrib = rotate_path(path, constrain(path_var.path_t, 0, 1), path_var.initial_ori, path_var.initial_ef_pos) -- recalculate the tangent to match the amount we advanced the path time tangent2_ef = p1 - p0 -- get the real world time corresponding to the quaternion change local q_change_t = (path_var.path_t - last_path_t) * path_var.total_time -- low pass filter the demanded roll angle r1 = path_var.roll + wrap_pi(r1 - path_var.roll) local alpha = calc_lowpass_alpha(q_change_t, AEROM_ANG_TC:get()) r1 = (1.0 - alpha) * path_var.roll + alpha * r1 r1 = wrap_pi(r1) path_var.tangent = tangent2_ef:copy() path_var.pos = p1:copy() path_var.roll = r1 --[[ calculation of error correction, calculating acceleration needed to bring us back on the path, and body rates in pitch and yaw to achieve those accelerations --]] -- component of pos_err perpendicular to the current path tangent local B = ortho_proj(pos_error_ef, tv_unit) -- derivative of pos_err perpendicular to the current path tangent, assuming tangent is constant local B_dot = ortho_proj(v, tv_unit) -- gains for error correction. local acc_err_ef = B:scale(ERR_CORR_P:get()) + B_dot:scale(ERR_CORR_D:get()) -- scale by per-maneuver error correction scale factor acc_err_ef = acc_err_ef:scale(attrib.pos_corr or 1.0) local acc_err_bf = quat_earth_to_body(ahrs_quat, acc_err_ef) local TAS = constrain(ahrs:get_EAS2TAS()*airspeed_constrained, 3, 100) local corr_rate_bf_y_rads = -acc_err_bf:z()/TAS local corr_rate_bf_z_rads = acc_err_bf:y()/TAS local cor_ang_vel_bf_rads = makeVector3f(0.0, corr_rate_bf_y_rads, corr_rate_bf_z_rads) if Vec3IsNaN(cor_ang_vel_bf_rads) then cor_ang_vel_bf_rads = makeVector3f(0,0,0) end local cor_ang_vel_bf_dps = cor_ang_vel_bf_rads:scale(math.deg(1)) if path_var.count < 2 then cor_ang_vel_bf_dps = Vector3f() end --[[ work out body frame path rate, this is based on two adjacent tangents on the path --]] local path_rate_ef_rads = tangents_to_rate(tangent1_ef, tangent2_ef, actual_dt) if Vec3IsNaN(path_rate_ef_rads) then gcs:send_text(0,string.format("path_rate_ef_rads: NaN")) path_rate_ef_rads = makeVector3f(0,0,0) end local path_rate_ef_dps = path_rate_ef_rads:scale(math.deg(1)) if path_var.count < 3 then -- cope with small initial misalignment path_rate_ef_dps:z(0) end local path_rate_bf_dps = quat_earth_to_body(ahrs_quat, path_rate_ef_dps) -- set the path roll rate path_rate_bf_dps:x(math.deg(wrap_pi(r1 - r0)/actual_dt)) --[[ calculate body frame roll rate to achieved the desired roll angle relative to the maneuver path --]] local zero_roll_angle_delta = Quaternion() zero_roll_angle_delta:from_angular_velocity(path_rate_ef_rads, actual_dt) path_var.accumulated_orientation_rel_ef = zero_roll_angle_delta*path_var.accumulated_orientation_rel_ef path_var.accumulated_orientation_rel_ef:normalize() local mf_axis = quat_earth_to_body(path_var.accumulated_orientation_rel_ef, makeVector3f(1, 0, 0)) local orientation_rel_mf_with_roll_angle = Quaternion() orientation_rel_mf_with_roll_angle:from_axis_angle(mf_axis, r1) orientation_rel_ef_with_roll_angle = orientation_rel_mf_with_roll_angle*path_var.accumulated_orientation_rel_ef --[[ calculate the error correction for the roll versus the desired roll --]] local roll_error = orientation_rel_ef_with_roll_angle * ahrs_quat roll_error:normalize() local err_axis_ef, err_angle_rad = to_axis_and_angle(roll_error) local time_const_roll = ROLL_CORR_TC:get() local err_angle_rate_ef_rads = err_axis_ef:scale(err_angle_rad/time_const_roll) local err_angle_rate_bf_dps = quat_earth_to_body(ahrs_quat,err_angle_rate_ef_rads):scale(math.deg(1)) -- zero any non-roll components err_angle_rate_bf_dps:y(0) err_angle_rate_bf_dps:z(0) --[[ implement lookahead for path rates --]] if AEROM_LKAHD:get() > 0 then local lookahead = AEROM_LKAHD:get() local lookahead_vt = lookahead / path_var.total_time p2 = rotate_path(path, constrain(path_var.path_t+lookahead_vt, 0, 1), path_var.initial_ori, path_var.initial_ef_pos) local tangent3_ef = p2 - p1 local lk_ef_rads = tangents_to_rate(tangent2_ef, tangent3_ef, 0.5*(lookahead+(1.0/LOOP_RATE))) -- scale for airspeed lk_ef_rads = lk_ef_rads:scale(sq(vel_length/path_var.target_speed)) local lookahead_bf_rads = quat_earth_to_body(ahrs_quat, lk_ef_rads) local lookahead_bf_dps = lookahead_bf_rads:scale(math.deg(1)) logger.write('AELK','Py,Ly,Pz,Lz', 'ffff', path_rate_bf_dps:y(), lookahead_bf_dps:y(), path_rate_bf_dps:z(), lookahead_bf_dps:z()) path_rate_bf_dps:y(lookahead_bf_dps:y()) path_rate_bf_dps:z(lookahead_bf_dps:z()) end --[[ calculate an additional yaw rate to get us to the right angle of sideslip for knifeedge --]] -- local sideslip_rate_bf_dps = calculate_side_slip_aoa(path_rate_bf_dps, ahrs_quat, airspeed_constrained, tv_unit, ahrs_velned, actual_dt) local sideslip_rate_bf_dps = Vector3f() --[[ total angular rate is sum of path rate, correction rate and roll correction rate --]] local tot_ang_vel_bf_dps = path_rate_bf_dps + cor_ang_vel_bf_dps + err_angle_rate_bf_dps + sideslip_rate_bf_dps --[[ apply angular accel limit --]] local ang_rate_diff_dps = tot_ang_vel_bf_dps - path_var.last_ang_rate_dps local max_delta_dps = AEROM_ANG_ACCEL:get() * actual_dt local max_delta_yaw_dps = max_delta_dps if AEROM_YAW_ACCEL:get() > 0 and (AEROM_YAW_ACCEL:get() < AEROM_ANG_ACCEL:get() or AEROM_ANG_ACCEL:get() <= 0) then max_delta_yaw_dps = AEROM_YAW_ACCEL:get() * actual_dt end if max_delta_dps > 0 then ang_rate_diff_dps:x(constrain(ang_rate_diff_dps:x(), -max_delta_dps, max_delta_dps)) ang_rate_diff_dps:y(constrain(ang_rate_diff_dps:y(), -max_delta_dps, max_delta_dps)) end if max_delta_yaw_dps > 0 then ang_rate_diff_dps:z(constrain(ang_rate_diff_dps:z(), -max_delta_yaw_dps, max_delta_yaw_dps)) end tot_ang_vel_bf_dps = path_var.last_ang_rate_dps + ang_rate_diff_dps path_var.last_ang_rate_dps = tot_ang_vel_bf_dps --[[ calculate a rudder offset for knife-edge --]] local rudder_offset_pct = 0 if AEROM_KE_RUDD:get() > 0 then rudder_offset_pct = calculate_rudder_offset(ahrs_quat, ahrs_gyro, airspeed_constrained) end --[[ log POSM is pose-measured, POST is pose-track, POSB is pose-track without the roll --]] log_pose('POSM', current_measured_pos_ef, ahrs_quat:inverse()) log_pose('POST', p1, orientation_rel_ef_with_roll_angle) logger.write('AETM', 'T,Terr,QCt,Adt','ffff', path_var.path_t, path_err_t, q_change_t, actual_dt) logger.write('AERT','Cx,Cy,Cz,Px,Py,Pz,Ex,Tx,Ty,Tz,Perr,Aerr,Yff,Rofs', 'ffffffffffffff', cor_ang_vel_bf_dps:x(), cor_ang_vel_bf_dps:y(), cor_ang_vel_bf_dps:z(), path_rate_bf_dps:x(), path_rate_bf_dps:y(), path_rate_bf_dps:z(), err_angle_rate_bf_dps:x(), tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z(), pos_error_ef:length(), wrap_180(math.deg(err_angle_rad)), sideslip_rate_bf_dps:z(), rudder_offset_pct) --log_pose('POSB', p1, path_var.accumulated_orientation_rel_ef) --[[ run the throttle based speed controller get the anticipated pitch at the throttle lookahead time we use the maximum of the current path pitch and the anticipated pitch --]] local qchange = Quaternion() qchange:from_angular_velocity(path_rate_ef_rads, AEROM_THR_LKAHD:get()) local qnew = qchange * orientation_rel_ef_with_roll_angle local anticipated_pitch_rad = math.max(qnew:get_euler_pitch(), orientation_rel_ef_with_roll_angle:get_euler_pitch()) local throttle = speed_PI.update(path_var.target_speed, anticipated_pitch_rad) local thr_min = AEROM_THR_MIN:get() if attrib.thr_boost then thr_min = math.max(thr_min, AEROM_THR_BOOST:get()) end throttle = constrain(throttle, thr_min, 100.0) if isNaN(throttle) or Vec3IsNaN(tot_ang_vel_bf_dps) then gcs:send_text(0,string.format("Path NaN - aborting")) return false end vehicle:set_target_throttle_rate_rpy(throttle, tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z()) vehicle:set_rudder_offset(rudder_offset_pct, true) if now - last_named_float_t > 1.0 / NAME_FLOAT_RATE then last_named_float_t = now gcs:send_named_float("PERR", pos_error_ef:length()) end local alt_error = (current_measured_pos_ef - path_var.initial_ef_pos):z() if alt_error > AEROM_ALT_ABORT:get() then gcs:send_text(0,"Too low altitude, aborting") return false end return true end --[[ an object defining a path --]] function PathFunction(fn, name) local self = {} self.fn = fn self.name = name return self end local command_table = {} command_table[1] = PathFunction(figure_eight, "Figure Eight") command_table[2] = PathFunction(loop, "Loop") command_table[3] = PathFunction(horizontal_rectangle, "Horizontal Rectangle") command_table[4] = PathFunction(climbing_circle, "Climbing Circle") command_table[5] = PathFunction(vertical_aerobatic_box, "Vertical Box") command_table[6] = PathFunction(immelmann_turn_fast, "Immelmann Fast") command_table[7] = PathFunction(straight_roll, "Axial Roll") command_table[8] = PathFunction(rolling_circle, "Rolling Circle") command_table[9] = PathFunction(half_cuban_eight, "Half Cuban Eight") command_table[10]= PathFunction(half_reverse_cuban_eight, "Half Reverse Cuban Eight") command_table[11]= PathFunction(cuban_eight, "Cuban Eight") command_table[12]= PathFunction(humpty_bump, "Humpty Bump") command_table[13]= PathFunction(straight_flight, "Straight Flight") command_table[14]= PathFunction(scale_figure_eight, "Scale Figure Eight") command_table[15]= PathFunction(immelmann_turn, "Immelmann Turn") command_table[16]= PathFunction(split_s, "Split-S") command_table[17]= PathFunction(upline_45, "Upline-45") command_table[18]= PathFunction(downline_45, "Downline-45") command_table[19]= PathFunction(stall_turn, "Stall Turn") command_table[20]= PathFunction(procedure_turn, "Procedure Turn") command_table[23]= PathFunction(half_climbing_circle, "Half Climbing Circle") command_table[25]= PathFunction(laydown_humpty, "Laydown Humpty") command_table[26]= PathFunction(barrel_roll, "Barrel Roll") command_table[27]= PathFunction(straight_flight, "Straight Hold") command_table[28]= PathFunction(partial_circle, "Partial Circle") command_table[31]= PathFunction(multi_point_roll, "Multi Point Roll") command_table[32]= PathFunction(side_step, "Side Step") --[[ a table of function available in loadable tricks --]] local load_table = {} load_table["loop"] = loop load_table["horizontal_rectangle"] = horizontal_rectangle load_table["climbing_circle"] = climbing_circle load_table["vertical_aerobatic_box"] = vertical_aerobatic_box load_table["immelmann_turn_fast"] = immelmann_turn_fast load_table["straight_roll"] = straight_roll load_table["rolling_circle"] = rolling_circle load_table["half_cuban_eight"] = half_cuban_eight load_table["half_reverse_cuban_eight"] = half_reverse_cuban_eight load_table["cuban_eight"] = cuban_eight load_table["humpty_bump"] = humpty_bump load_table["straight_flight"] = straight_flight load_table["scale_figure_eight"] = scale_figure_eight load_table["immelmann_turn"] = immelmann_turn load_table["split_s"] = split_s load_table["upline_45"] = upline_45 load_table["downline_45"] = downline_45 load_table["stall_turn"] = stall_turn load_table["procedure_turn"] = procedure_turn load_table["two_point_roll"] = two_point_roll load_table["half_climbing_circle"] = half_climbing_circle load_table["laydown_humpty"] = laydown_humpty load_table["straight_align"] = straight_align load_table["figure_eight"] = figure_eight load_table["barrel_roll"] = barrel_roll load_table["straight_hold"] = straight_hold load_table["partial_circle"] = partial_circle load_table["multi_point_roll"] = multi_point_roll load_table["side_step"] = side_step load_table["align_box"] = align_box load_table["align_center"] = align_center --[[ interpret an attribute value, coping with special cases --]] function interpret_attrib(v) if v == "true" then return true end if v == "false" then return false end -- could be a number local n = tonumber(v) if n ~= nil then return n end -- assume a string return v end --[[ parse a function definition in a txt load file, adding it to the load table so it can be used in schedules --]] function parse_function(line, file) _, _, funcname = string.find(line, "^function%s*([%w_]+).*$") if not funcname then gcs:send_text(0, string.format("Parse error: %s", line)) return end local funcstr = line .. "\n" while true do local line = file:read() if not line then gcs:send_text(0, string.format("Error: end of file in %s", funcname)) break end funcstr = funcstr .. line .. "\n" if string.sub(line,1,3) == "end" then break end end local f, errloc, err = load(funcstr, funcname, "t", _ENV) if not f then gcs:send_text(0,string.format("Error %s: %s", errloc, err)) return end -- fun the function code, which creates the function local success, err = pcall(f) if not success then gcs:send_text(0,string.format("Error %s: %s", funcname, err)) end load_table[funcname] = _ENV[funcname] end --[[ load a trick description from a text file --]] function load_trick(id) if command_table[id] ~= nil then -- already have it return end -- look in 3 possible locations for the trick, coping with SITL and real boards local trickdirs = { "APM/scripts/", "scripts/", "./" } local file = nil local fname = string.format("trick%u.txt", id) for i = 1, #trickdirs do file = io.open(trickdirs[i] .. fname, "r") if file then break end end if file == nil then gcs:send_text(0,string.format("Failed to open %s", fname)) return end local name = string.format("Trick%u", id) local attrib = {} local paths = {} while true do local line = file:read() if not line then break end -- trim trailing spaces line = string.gsub(line, '^(.-)%s*$', '%1') local _, _, cmd, arg1, arg2, arg3, arg4 = string.find(line, "^([%w_:]+)%s*([-.%d]*)%s*([-.%d]*)%s*([-.%d]*)%s*([-.%d]*)") if cmd == "" or cmd == nil or string.sub(cmd,1,1) == "#" then -- ignore comments elseif cmd == "name:" then _, _, name = string.find(line, "^name:%s*([%w_]+)$") elseif string.sub(cmd,-1) == ":" then _, _, a, s = string.find(line, "^([%w_]+):%s*([%w_:%s-]+)$") if a ~= nil then attrib[a] = interpret_attrib(s) else gcs:send_text(0, string.format("Bad line: '%s'", line)) end elseif cmd == "function" then parse_function(line, file) elseif cmd ~= nil then arg1 = tonumber(arg1) or 0 arg2 = tonumber(arg2) or 0 arg3 = tonumber(arg3) or 0 arg4 = tonumber(arg4) or 0 local f = load_table[cmd] if f == nil then gcs:send_text(0,string.format("Unknown command '%s' in %s", cmd, fname)) else paths[#paths+1] = { f, { arg1, arg2, arg3, arg4 }} for k, v in pairs(attrib) do paths[#paths][k] = v end attrib = {} end end end local pc = path_composer(name, paths) gcs:send_text(0, string.format("Loaded trick%u '%s'", id, name)) command_table[id] = PathFunction(pc, name) end function PathTask(fn, name, id, initial_yaw_deg, arg1, arg2, arg3, arg4) local self = {} if type(fn) == "table" then self.fn = fn else self.fn = fn(arg1, arg2, arg3, arg4) end self.name = name self.id = id self.initial_yaw_deg = initial_yaw_deg self.started = false return self end -- see if an auto mission item needs to be run function check_auto_mission() id, cmd, arg1, arg2, arg3, arg4 = vehicle:nav_script_time() if not id then return end if id ~= last_id then -- we've started a new command current_task = nil last_id = id local initial_yaw_deg = get_ground_course_deg() load_trick(cmd) if command_table[cmd] == nil then gcs:send_text(0, string.format("Trick %u not found", cmd)) return end gcs:send_text(0, string.format("Starting %s!", command_table[cmd].name )) -- work out yaw between previous WP and next WP local cnum = mission:get_current_nav_index() -- find previous nav waypoint local loc_prev = get_wp_location(cnum-1) local loc_next = get_wp_location(cnum+1) local i= cnum-1 while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do i = i-1 loc_prev = get_wp_location(i) end -- find next nav waypoint i = cnum+1 while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do i = i+1 loc_next = get_wp_location(resolve_jump(i)) end local wp_yaw_deg = math.deg(loc_prev:get_bearing(loc_next)) if math.abs(wrap_180(initial_yaw_deg - wp_yaw_deg)) > 90 then gcs:send_text(0, string.format("Doing turnaround!")) wp_yaw_deg = wrap_180(wp_yaw_deg + 180) end initial_yaw_deg = wp_yaw_deg current_task = PathTask(command_table[cmd].fn, command_table[cmd].name, id, initial_yaw_deg, arg1, arg2, arg3, arg4) end end local last_trick_action_state = 0 local trick_sel_chan = nil local last_trick_selection = nil --[[ get selected trick. Trick numbers are 1 .. TRIK_COUNT. A value of 0 is invalid --]] function get_trick_selection() if trick_sel_chan == nil then trick_sel_chan = rc:find_channel_for_option(TRIK_SEL_FN:get()) if trick_sel_chan == nil then return 0 end end -- get trick selection based on selection channel input and number of tricks local i = math.floor(TRIK_COUNT:get() * constrain(0.5*(trick_sel_chan:norm_input_ignore_trim()+1),0,0.999)+1) if TRICKS[i] == nil then return 0 end return i end --[[ check for running a trick --]] function check_trick() local selection = get_trick_selection() local action = rc:get_aux_cached(TRIK_ACT_FN:get()) if action == 0 and current_task ~= nil then gcs:send_text(0,string.format("Trick aborted")) current_task = nil last_trick_selection = nil -- use invalid mode to disable script control vehicle:nav_scripting_enable(255) return end if selection == 0 then return end if action == 1 and selection ~= last_trick_selection then local id = TRICKS[selection].id:get() load_trick(id) if command_table[id] ~= nil then local cmd = command_table[id] gcs:send_text(0, string.format("Trick %u selected (%s)", selection, cmd.name)) last_trick_selection = selection return end end if current_task ~= nil then -- let the task finish return end if action ~= last_trick_action_state then last_trick_selection = selection last_trick_action_state = action if selection == 0 then gcs:send_text(0, string.format("No trick selected")) return end local id = TRICKS[selection].id:get() load_trick(id) if command_table[id] == nil then gcs:send_text(0, string.format("Invalid trick ID %u", id)) return end local cmd = command_table[id] if action == 1 then gcs:send_text(0, string.format("Trick %u selected (%s)", selection, cmd.name)) end if action == 2 then last_trick_selection = nil local current_mode = vehicle:get_mode() if not vehicle:nav_scripting_enable(current_mode) then gcs:send_text(0, string.format("Tricks not available in mode")) return end gcs:send_text(0, string.format("Trick %u started (%s)", selection, cmd.name)) local initial_yaw_deg = get_ground_course_deg() current_task = PathTask(cmd.fn, cmd.name, nil, initial_yaw_deg, TRICKS[selection].args[1]:get(), TRICKS[selection].args[2]:get(), TRICKS[selection].args[3]:get(), TRICKS[selection].args[4]:get()) end end end function update() if ahrs:get_velocity_NED() == nil or ahrs:get_EAS2TAS() == nil then -- don't start till we have a valid ahrs estimates return update, 1000.0/LOOP_RATE end if vehicle:get_mode() == MODE_AUTO then check_auto_mission() elseif TRICKS ~= nil then check_trick() end if current_task ~= nil then if not do_path() then gcs:send_text(0, string.format("Finishing %s!", current_task.name)) if current_task.id ~= nil then vehicle:nav_script_time_done(current_task.id) else -- use invalid mode to disable script control vehicle:nav_scripting_enable(255) end current_task = nil end end return update, 1000.0/LOOP_RATE end gcs:send_text(0, string.format("Loaded plane_aerobatics.lua")) return update()