/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* 22 state EKF based on https://github.com/priseborough/InertialNav Converted from Matlab to C++ by Paul Riseborough This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef AP_NavEKF #define AP_NavEKF #include #include #include #include #include #include // #define MATH_CHECK_INDEXES 1 #include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN #include #endif class AP_AHRS; class NavEKF { public: typedef float ftype; #if MATH_CHECK_INDEXES typedef VectorN Vector2; typedef VectorN Vector3; typedef VectorN Vector6; typedef VectorN Vector8; typedef VectorN Vector11; typedef VectorN Vector13; typedef VectorN Vector14; typedef VectorN Vector15; typedef VectorN Vector22; typedef VectorN,3> Matrix3; typedef VectorN,22> Matrix22; typedef VectorN,22> Matrix22_50; #else typedef ftype Vector2[2]; typedef ftype Vector3[3]; typedef ftype Vector6[6]; typedef ftype Vector8[8]; typedef ftype Vector11[11]; typedef ftype Vector13[13]; typedef ftype Vector14[14]; typedef ftype Vector15[15]; typedef ftype Vector22[22]; typedef ftype Vector31[31]; typedef ftype Matrix3[3][3]; typedef ftype Matrix22[22][22]; typedef ftype Matrix31_50[31][50]; #endif // Constructor NavEKF(const AP_AHRS *ahrs, AP_Baro &baro); // This function is used to initialise the filter whilst moving, using the AHRS DCM solution // It should NOT be used to re-initialise after a timeout as DCM will also be corrupted void InitialiseFilterDynamic(void); // Initialise the states from accelerometer and magnetometer data (if present) // This method can only be used when the vehicle is static void InitialiseFilterBootstrap(void); // Update Filter States - this should be called whenever new IMU data is available void UpdateFilter(void); // Check basic filter health metrics and return a consolidated health status bool healthy(void) const; // return true if filter is dead-reckoning height bool HeightDrifting(void) const; // return true if filter is dead-reckoning position bool PositionDrifting(void) const; // return the last calculated NED position relative to the reference point (m). // return false if no position is available bool getPosNED(Vector3f &pos) const; // return NED velocity in m/s void getVelNED(Vector3f &vel) const; // return body axis gyro bias estimates in rad/sec void getGyroBias(Vector3f &gyroBias) const; // return weighting of first IMU in blending function and the individual Z-accel bias estimates in m/s^2 void getAccelBias(Vector3f &accelBias) const; // return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis) void getWind(Vector3f &wind) const; // return earth magnetic field estimates in measurement units / 1000 void getMagNED(Vector3f &magNED) const; // return body magnetic field estimates in measurement units / 1000 void getMagXYZ(Vector3f &magXYZ) const; // return the last calculated latitude, longitude and height bool getLLH(struct Location &loc) const; // return the Euler roll, pitch and yaw angle in radians void getEulerAngles(Vector3f &eulers) const; // return the transformation matrix from XYZ (body) to NED axes void getRotationBodyToNED(Matrix3f &mat) const; // return the quaternions defining the rotation from NED to XYZ (body) axes void getQuaternion(Quaternion &quat) const; // return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements void getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov) const; // return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements void getVariances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const; // should we use the compass? This is public so it can be used for // reporting via ahrs.use_compass() bool use_compass(void) const; /* return the filter fault status as a bitmasked integer 0 = filter divergence detected via gyro bias growth 1 = filter divergence detected by large covariances 2 = badly conditioned X magnetometer fusion 3 = badly conditioned Y magnetometer fusion 4 = badly conditioned Z magnetometer fusion 5 = badly conditioned airspeed fusion 6 = badly conditioned synthetic sideslip fusion 7 = unassigned return normalised delta gyro bias length used for divergence test */ void getFilterFaults(uint8_t &faults, float &deltaGyroBias) const; static const struct AP_Param::GroupInfo var_info[]; private: const AP_AHRS *_ahrs; AP_Baro &_baro; // the states are available in two forms, either as a Vector27, or // broken down as individual elements. Both are equivalent (same // memory) Vector31 states; struct state_elements { Quaternion quat; // 0..3 Vector3f velocity; // 4..6 Vector3f position; // 7..9 Vector3f gyro_bias; // 10..12 float accel_zbias1; // 13 Vector2f wind_vel; // 14..15 Vector3f earth_magfield; // 16..18 Vector3f body_magfield; // 19..21 float accel_zbias2; // 22 Vector3f vel1; // 23 .. 25 float posD1; // 26 Vector3f vel2; // 27 .. 29 float posD2; // 30 } &state; // update the quaternion, velocity and position states using IMU measurements void UpdateStrapdownEquationsNED(); // calculate the predicted state covariance matrix void CovariancePrediction(); // force symmetry on the state covariance matrix void ForceSymmetry(); // copy covariances across from covariance prediction calculation and fix numerical errors void CopyAndFixCovariances(); // constrain variances (diagonal terms) in the state covariance matrix void ConstrainVariances(); // constrain states void ConstrainStates(); // fuse selected position, velocity and height measurements void FuseVelPosNED(); // fuse magnetometer measurements void FuseMagnetometer(); // fuse true airspeed measurements void FuseAirspeed(); // fuse sythetic sideslip measurement of zero void FuseSideslip(); // zero specified range of rows in the state covariance matrix void zeroRows(Matrix22 &covMat, uint8_t first, uint8_t last); // zero specified range of columns in the state covariance matrix void zeroCols(Matrix22 &covMat, uint8_t first, uint8_t last); // store states along with system time stamp in msces void StoreStates(void); // Reset the stored state history and store the current state void StoreStatesReset(void); // recall state vector stored at closest time to the one specified by msec void RecallStates(state_elements &statesForFusion, uint32_t msec); // calculate nav to body quaternions from body to nav rotation matrix void quat2Tbn(Matrix3f &Tbn, const Quaternion &quat) const; // calculate the NED earth spin vector in rad/sec void calcEarthRateNED(Vector3f &omega, int32_t latitude) const; // calculate whether the flight vehicle is on the ground or flying from height, airspeed and GPS speed void SetFlightAndFusionModes(); // initialise the covariance matrix void CovarianceInit(); // update IMU delta angle and delta velocity measurements void readIMUData(); // check for new valid GPS data and update stored measurement if available void readGpsData(); // check for new altitude measurement data and update stored measurement if available void readHgtData(); // check for new magnetometer data and update store measurements if available void readMagData(); // check for new airspeed data and update stored measurements if available void readAirSpdData(); // determine when to perform fusion of GPS position and velocity measurements void SelectVelPosFusion(); // determine when to perform fusion of true airspeed measurements void SelectTasFusion(); // determine when to perform fusion of synthetic sideslp measurements void SelectBetaFusion(); // determine when to perform fusion of magnetometer measurements void SelectMagFusion(); // force alignment of the yaw angle using GPS velocity data void alignYawGPS(); // Forced alignment of the wind velocity states so that they are set to the reciprocal of // the ground speed and scaled to 6 m/s. This is used when launching a fly-forward vehicle without an airspeed sensor // on the assumption that launch will be into wind and 6 is representative global average at height // http://maps.google.com/gallery/details?id=zJuaSgXp_WLc.kTBytKPmNODY&hl=en void setWindVelStates(); // initialise the earth magnetic field states using declination and current attitude and magnetometer meaasurements // and return attitude quaternion Quaternion calcQuatAndFieldStates(float roll, float pitch); // zero stored variables void ZeroVariables(); // reset the horizontal position states uing the last GPS measurement void ResetPosition(void); // reset velocity states using the last GPS measurement void ResetVelocity(void); // reset the vertical position state using the last height measurement void ResetHeight(void); // return true if we should use the airspeed sensor bool useAirspeed(void) const; // return true if the vehicle code has requested use of static mode // in static mode, position and height are constrained to zero, allowing an attitude // reference to be initialised and maintained when on the ground and without GPS lock bool static_mode_demanded(void) const; // decay GPS horizontal position offset to close to zero at a rate of 1 m/s // this allows large GPS position jumps to be accomodated gradually void decayGpsOffset(void); // Check for filter divergence void checkDivergence(void); // EKF Mavlink Tuneable Parameters AP_Float _gpsHorizVelNoise; // GPS horizontal velocity measurement noise : m/s AP_Float _gpsVertVelNoise; // GPS vertical velocity measurement noise : m/s AP_Float _gpsHorizPosNoise; // GPS horizontal position measurement noise m AP_Float _baroAltNoise; // Baro height measurement noise : m^2 AP_Float _magNoise; // magnetometer measurement noise : gauss AP_Float _easNoise; // equivalent airspeed measurement noise : m/s AP_Float _windVelProcessNoise; // wind velocity state process noise : m/s^2 AP_Float _wndVarHgtRateScale; // scale factor applied to wind process noise due to height rate AP_Float _magEarthProcessNoise; // earth magnetic field process noise : gauss/sec AP_Float _magBodyProcessNoise; // earth magnetic field process noise : gauss/sec AP_Float _gyrNoise; // gyro process noise : rad/s AP_Float _accNoise; // accelerometer process noise : m/s^2 AP_Float _gyroBiasProcessNoise; // gyro bias state process noise : rad/s AP_Float _accelBiasProcessNoise;// accel bias state process noise : m/s^2 AP_Int16 _msecVelDelay; // effective average delay of GPS velocity measurements rel to IMU (msec) AP_Int16 _msecPosDelay; // effective average delay of GPS position measurements rel to (msec) AP_Int8 _fusionModeGPS; // 0 = use 3D velocity, 1 = use 2D velocity, 2 = use no velocity AP_Int8 _gpsVelInnovGate; // Number of standard deviations applied to GPS velocity innovation consistency check AP_Int8 _gpsPosInnovGate; // Number of standard deviations applied to GPS position innovation consistency check AP_Int8 _hgtInnovGate; // Number of standard deviations applied to height innovation consistency check AP_Int8 _magInnovGate; // Number of standard deviations applied to magnetometer innovation consistency check AP_Int8 _tasInnovGate; // Number of standard deviations applied to true airspeed innovation consistency check AP_Int8 _magCal; // Sets activation condition for in-flight magnetometer calibration AP_Int16 _gpsGlitchAccelMax; // Maximum allowed discrepancy between inertial and GPS Horizontal acceleration before GPS data is ignored : cm/s^2 AP_Int8 _gpsGlitchRadiusMax; // Maximum allowed discrepancy between inertial and GPS Horizontal position before GPS glitch is declared : m // Tuning parameters AP_Float _gpsNEVelVarAccScale; // scale factor applied to NE velocity measurement variance due to Vdot AP_Float _gpsDVelVarAccScale; // scale factor applied to D velocity measurement variance due to Vdot AP_Float _gpsPosVarAccScale; // scale factor applied to position measurement variance due to Vdot AP_Int16 _msecHgtDelay; // effective average delay of height measurements rel to (msec) AP_Int16 _msecMagDelay; // effective average delay of magnetometer measurements rel to IMU (msec) AP_Int16 _msecTasDelay; // effective average delay of airspeed measurements rel to IMU (msec) AP_Int16 _gpsRetryTimeUseTAS; // GPS retry time following innovation consistency fail if TAS measurements are used (msec) AP_Int16 _gpsRetryTimeNoTAS; // GPS retry time following innovation consistency fail if no TAS measurements are used (msec) AP_Int16 _hgtRetryTimeMode0; // height measurement retry time following innovation consistency fail if GPS fusion mode is = 0 (msec) AP_Int16 _hgtRetryTimeMode12; // height measurement retry time following innovation consistency fail if GPS fusion mode is > 0 (msec) uint32_t _magFailTimeLimit_ms; // number of msec before a magnetometer failing innovation consistency checks is declared failed (msec) uint32_t lastDivergeTime_ms; // time in msec divergence of filter last detected float _gyroBiasNoiseScaler; // scale factor applied to gyro bias state process variance when on ground float _magVarRateScale; // scale factor applied to magnetometer variance due to angular rate uint16_t _msecGpsAvg; // average number of msec between GPS measurements uint16_t _msecHgtAvg; // average number of msec between height measurements uint16_t _msecBetaAvg; // maximum number of msec between synthetic sideslip measurements float dtVelPos; // average of msec between position and velocity corrections // Variables uint8_t skipCounter; // counter used to skip position and height corrections to achieve _skipRatio bool statesInitialised; // boolean true when filter states have been initialised bool velHealth; // boolean true if velocity measurements have passed innovation consistency check bool posHealth; // boolean true if position measurements have passed innovation consistency check bool hgtHealth; // boolean true if height measurements have passed innovation consistency check bool magHealth; // boolean true if magnetometer has passed innovation consistency check bool velTimeout; // boolean true if velocity measurements have failed innovation consistency check and timed out bool posTimeout; // boolean true if position measurements have failed innovation consistency check and timed out bool hgtTimeout; // boolean true if height measurements have failed innovation consistency check and timed out bool magTimeout; // boolean true if magnetometer measurements have failed for too long and have timed out bool filterDiverged; // boolean true if the filter has diverged bool magFailed; // boolean true if the magnetometer has failed Vector31 Kfusion; // Kalman gain vector Matrix22 KH; // intermediate result used for covariance updates Matrix22 KHP; // intermediate result used for covariance updates Matrix22 P; // covariance matrix VectorN storedStates; // state vectors stored for the last 50 time steps uint32_t statetimeStamp[50]; // time stamp for each state vector stored Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad) Vector3f correctedDelVel12; // delta velocities along the XYZ body axes for weighted average of IMU1 and IMU2 corrected for errors (m/s) Vector3f correctedDelVel1; // delta velocities along the XYZ body axes for IMU1 corrected for errors (m/s) Vector3f correctedDelVel2; // delta velocities along the XYZ body axes for IMU2 corrected for errors (m/s) Vector3f summedDelAng; // corrected & summed delta angles about the xyz body axes (rad) Vector3f summedDelVel; // corrected & summed delta velocities along the XYZ body axes (m/s) Vector3f prevDelAng; // previous delta angle use for INS coning error compensation Vector3f lastGyroBias; // previous gyro bias vector used by filter divergence check Matrix3f prevTnb; // previous nav to body transformation used for INS earth rotation compensation ftype accNavMag; // magnitude of navigation accel - used to adjust GPS obs variance (m/s^2) ftype accNavMagHoriz; // magnitude of navigation accel in horizontal plane (m/s^2) Vector3f earthRateNED; // earths angular rate vector in NED (rad/s) Vector3f dVelIMU1; // delta velocity vector in XYZ body axes measured by IMU1 (m/s) Vector3f dVelIMU2; // delta velocity vector in XYZ body axes measured by IMU2 (m/s) Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad) ftype dtIMU; // time lapsed since the last IMU measurement (sec) ftype dt; // time lapsed since the last covariance prediction (sec) ftype hgtRate; // state for rate of change of height filter bool onGround; // boolean true when the flight vehicle is on the ground (not flying) bool prevOnGround; // value of onGround from previous update Vector6 innovVelPos; // innovation output for a group of measurements Vector6 varInnovVelPos; // innovation variance output for a group of measurements bool fuseVelData; // this boolean causes the velNED measurements to be fused bool fusePosData; // this boolean causes the posNE measurements to be fused bool fuseHgtData; // this boolean causes the hgtMea measurements to be fused Vector3f velNED; // North, East, Down velocity measurements (m/s) Vector2f gpsPosNE; // North, East position measurements (m) ftype hgtMea; // height measurement relative to reference point (m) state_elements statesAtVelTime; // States at the effective time of velNED measurements state_elements statesAtPosTime; // States at the effective time of posNE measurements state_elements statesAtHgtTime; // States at the effective time of hgtMea measurement Vector3f innovMag; // innovation output from fusion of X,Y,Z compass measurements Vector3f varInnovMag; // innovation variance output from fusion of X,Y,Z compass measurements bool fuseMagData; // boolean true when magnetometer data is to be fused Vector3f magData; // magnetometer flux readings in X,Y,Z body axes state_elements statesAtMagMeasTime; // filter states at the effective time of compass measurements ftype innovVtas; // innovation output from fusion of airspeed measurements ftype varInnovVtas; // innovation variance output from fusion of airspeed measurements bool fuseVtasData; // boolean true when airspeed data is to be fused float VtasMeas; // true airspeed measurement (m/s) state_elements statesAtVtasMeasTime; // filter states at the effective measurement time Vector3f magBias; // magnetometer bias vector in XYZ body axes const ftype covTimeStepMax; // maximum time allowed between covariance predictions const ftype covDelAngMax; // maximum delta angle between covariance predictions bool covPredStep; // boolean set to true when a covariance prediction step has been performed bool magFusePerformed; // boolean set to true when magnetometer fusion has been perfomred in that time step bool magFuseRequired; // boolean set to true when magnetometer fusion will be perfomred in the next time step bool posVelFuseStep; // boolean set to true when position and velocity fusion is being performed bool tasFuseStep; // boolean set to true when airspeed fusion is being performed uint32_t TASmsecPrev; // time stamp of last TAS fusion step uint32_t BETAmsecPrev; // time stamp of last synthetic sideslip fusion step const uint32_t TASmsecMax; // maximum allowed interval between TAS fusion steps uint32_t MAGmsecPrev; // time stamp of last compass fusion step uint32_t HGTmsecPrev; // time stamp of last height measurement fusion step const bool fuseMeNow; // boolean to force fusion whenever data arrives bool staticMode; // boolean to force position and velocity measurements to zero for pre-arm or bench testing bool prevStaticMode; // value of static mode from last update uint32_t lastMagUpdate; // last time compass was updated Vector3f velDotNED; // rate of change of velocity in NED frame Vector3f velDotNEDfilt; // low pass filtered velDotNED uint32_t lastAirspeedUpdate; // last time airspeed was updated uint32_t IMUmsec; // time that the last IMU value was taken ftype gpsCourse; // GPS ground course angle(rad) ftype gpsGndSpd; // GPS ground speed (m/s) bool newDataGps; // true when new GPS data has arrived bool newDataMag; // true when new magnetometer data has arrived float gpsVarScaler; // scaler applied to gps measurement variance to allow for oversampling bool newDataTas; // true when new airspeed data has arrived bool tasDataWaiting; // true when new airspeed data is waiting to be fused bool newDataHgt; // true when new height data has arrived uint32_t lastHgtMeasTime; // time of last height measurement used to determine if new data has arrived uint32_t lastHgtTime_ms; // time of last height update (msec) used to calculate timeout float hgtVarScaler; // scaler applied to height measurement variance to allow for oversampling uint32_t velFailTime; // time stamp when GPS velocity measurement last failed covaraiance consistency check (msec) uint32_t posFailTime; // time stamp when GPS position measurement last failed covaraiance consistency check (msec) uint32_t hgtFailTime; // time stamp when height measurement last failed covaraiance consistency check (msec) uint8_t storeIndex; // State vector storage index uint32_t lastStateStoreTime_ms; // time of last state vector storage uint32_t lastFixTime_ms; // time of last GPS fix used to determine if new data has arrived uint32_t secondLastFixTime_ms; // time of second last GPS fix used to determine how long since last update uint32_t lastHealthyMagTime_ms; // time the magnetometer was last declared healthy Vector3f lastAngRate; // angular rate from previous IMU sample used for trapezoidal integrator Vector3f lastAccel1; // acceleration from previous IMU1 sample used for trapezoidal integrator Vector3f lastAccel2; // acceleration from previous IMU2 sample used for trapezoidal integrator Matrix22 nextP; // Predicted covariance matrix before addition of process noise to diagonals Vector22 processNoise; // process noise added to diagonals of predicted covariance matrix Vector15 SF; // intermediate variables used to calculate predicted covariance matrix Vector8 SG; // intermediate variables used to calculate predicted covariance matrix Vector11 SQ; // intermediate variables used to calculate predicted covariance matrix Vector8 SPP; // intermediate variables used to calculate predicted covariance matrix float IMU1_weighting; // Weighting applied to use of IMU1. Varies between 0 and 1. bool yawAligned; // true when the yaw angle has been aligned Vector2f gpsPosGlitchOffsetNE; // offset applied to GPS data in the NE direction to compensate for rapid changes in GPS solution uint32_t lastDecayTime_ms; // time of last decay of GPS position offset float velTestRatio; // sum of squares of GPS velocity innovation divided by fail threshold float posTestRatio; // sum of squares of GPS position innovation divided by fail threshold float hgtTestRatio; // sum of squares of baro height innovation divided by fail threshold Vector3f magTestRatio; // sum of squares of magnetometer innovations divided by fail threshold float tasTestRatio; // sum of squares of true airspeed innovation divided by fail threshold bool inhibitWindStates; // true when wind states and covariances are to remain constant bool inhibitMagStates; // true when magnetic field states and covariances are to remain constant struct { bool diverged:1; bool large_covarience:1; bool bad_xmag:1; bool bad_ymag:1; bool bad_zmag:1; bool bad_airspeed:1; bool bad_sideslip:1; } faultStatus; float scaledDeltaGyrBiasLgth; // scaled delta gyro bias vector length used to test for filter divergence // states held by magnetomter fusion across time steps // magnetometer X,Y,Z measurements are fused across three time steps // to level computational load as this is an expensive operation struct { ftype q0; ftype q1; ftype q2; ftype q3; ftype magN; ftype magE; ftype magD; ftype magXbias; ftype magYbias; ftype magZbias; uint8_t obsIndex; Matrix3f DCM; Vector3f MagPred; ftype R_MAG; ftype SH_MAG[9]; } mag_state; #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN // performance counters perf_counter_t _perf_UpdateFilter; perf_counter_t _perf_CovariancePrediction; perf_counter_t _perf_FuseVelPosNED; perf_counter_t _perf_FuseMagnetometer; perf_counter_t _perf_FuseAirspeed; perf_counter_t _perf_FuseSideslip; #endif // should we assume zero sideslip? bool assume_zero_sideslip(void) const; }; #if CONFIG_HAL_BOARD != HAL_BOARD_PX4 && CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN #define perf_begin(x) #define perf_end(x) #endif #endif // AP_NavEKF