/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * quaternion.cpp * Copyright (C) Andrew Tridgell 2012 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include "AP_Math.h" // return the rotation matrix equivalent for this quaternion void Quaternion::rotation_matrix(Matrix3f &m) const { float q3q3 = q3 * q3; float q3q4 = q3 * q4; float q2q2 = q2 * q2; float q2q3 = q2 * q3; float q2q4 = q2 * q4; float q1q2 = q1 * q2; float q1q3 = q1 * q3; float q1q4 = q1 * q4; float q4q4 = q4 * q4; m.a.x = 1-2*(q3q3 + q4q4); m.a.y = 2*(q2q3 - q1q4); m.a.z = 2*(q2q4 + q1q3); m.b.x = 2*(q2q3 + q1q4); m.b.y = 1-2*(q2q2 + q4q4); m.b.z = 2*(q3q4 - q1q2); m.c.x = 2*(q2q4 - q1q3); m.c.y = 2*(q3q4 + q1q2); m.c.z = 1-2*(q2q2 + q3q3); } // return the rotation matrix equivalent for this quaternion // Thanks to Martin John Baker // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm void Quaternion::from_rotation_matrix(const Matrix3f &m) { const float &m00 = m.a.x; const float &m11 = m.b.y; const float &m22 = m.c.z; const float &m10 = m.b.x; const float &m01 = m.a.y; const float &m20 = m.c.x; const float &m02 = m.a.z; const float &m21 = m.c.y; const float &m12 = m.b.z; float &qw = q1; float &qx = q2; float &qy = q3; float &qz = q4; float tr = m00 + m11 + m22; if (tr > 0) { float S = sqrtf(tr+1) * 2; qw = 0.25f * S; qx = (m21 - m12) / S; qy = (m02 - m20) / S; qz = (m10 - m01) / S; } else if ((m00 > m11) && (m00 > m22)) { float S = sqrtf(1.0 + m00 - m11 - m22) * 2; qw = (m21 - m12) / S; qx = 0.25f * S; qy = (m01 + m10) / S; qz = (m02 + m20) / S; } else if (m11 > m22) { float S = sqrtf(1.0 + m11 - m00 - m22) * 2; qw = (m02 - m20) / S; qx = (m01 + m10) / S; qy = 0.25f * S; qz = (m12 + m21) / S; } else { float S = sqrtf(1.0 + m22 - m00 - m11) * 2; qw = (m10 - m01) / S; qx = (m02 + m20) / S; qy = (m12 + m21) / S; qz = 0.25f * S; } } // convert a vector from earth to body frame void Quaternion::earth_to_body(Vector3f &v) const { Matrix3f m; // we reverse z before and afterwards because of the differing // quaternion conventions from APM conventions. v.z = -v.z; rotation_matrix(m); v = m * v; v.z = -v.z; } // create a quaternion from Euler angles void Quaternion::from_euler(float roll, float pitch, float yaw) { float cr2 = cosf(roll*0.5f); float cp2 = cosf(pitch*0.5f); float cy2 = cosf(yaw*0.5f); float sr2 = sinf(roll*0.5f); float sp2 = sinf(pitch*0.5f); float sy2 = sinf(yaw*0.5f); q1 = cr2*cp2*cy2 + sr2*sp2*sy2; q2 = sr2*cp2*cy2 - cr2*sp2*sy2; q3 = cr2*sp2*cy2 + sr2*cp2*sy2; q4 = cr2*cp2*sy2 - sr2*sp2*cy2; } // create eulers from a quaternion void Quaternion::to_euler(float *roll, float *pitch, float *yaw) const { if (roll) { *roll = (atan2f(2.0f*(q1*q2 + q3*q4), 1 - 2.0f*(q2*q2 + q3*q3))); } if (pitch) { // we let safe_asin() handle the singularities near 90/-90 in pitch *pitch = safe_asin(2.0f*(q1*q3 - q4*q2)); } if (yaw) { *yaw = atan2f(2.0f*(q1*q4 + q2*q3), 1 - 2.0f*(q3*q3 + q4*q4)); } } float Quaternion::length(void) const { return sqrtf(sq(q1) + sq(q2) + sq(q3) + sq(q4)); } void Quaternion::normalize(void) { float quatMag = length(); if (quatMag > 1e-16f) { float quatMagInv = 1.0f/quatMag; q1 *= quatMagInv; q2 *= quatMagInv; q3 *= quatMagInv; q4 *= quatMagInv; } }