/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * ArduCopter Version 3.0 * Creator: Jason Short * Lead Developer: Randy Mackay * Lead Tester: Marco Robustini * Based on code and ideas from the Arducopter team: Leonard Hall, Andrew Tridgell, Robert Lefebvre, Pat Hickey, Michael Oborne, Jani Hirvinen, Olivier Adler, Kevin Hester, Arthur Benemann, Jonathan Challinger, John Arne Birkeland, Jean-Louis Naudin, Mike Smith, and more * Thanks to: Chris Anderson, Jordi Munoz, Jason Short, Doug Weibel, Jose Julio * * Special Thanks to contributors (in alphabetical order by first name): * * Adam M Rivera :Auto Compass Declination * Amilcar Lucas :Camera mount library * Andrew Tridgell :General development, Mavlink Support * Angel Fernandez :Alpha testing * AndreasAntonopoulous:GeoFence * Arthur Benemann :DroidPlanner GCS * Benjamin Pelletier :Libraries * Bill King :Single Copter * Christof Schmid :Alpha testing * Craig Elder :Release Management, Support * Dani Saez :V Octo Support * Doug Weibel :DCM, Libraries, Control law advice * Emile Castelnuovo :VRBrain port, bug fixes * Gregory Fletcher :Camera mount orientation math * Guntars :Arming safety suggestion * HappyKillmore :Mavlink GCS * Hein Hollander :Octo Support, Heli Testing * Igor van Airde :Control Law optimization * Jack Dunkle :Alpha testing * James Goppert :Mavlink Support * Jani Hiriven :Testing feedback * Jean-Louis Naudin :Auto Landing * John Arne Birkeland :PPM Encoder * Jose Julio :Stabilization Control laws, MPU6k driver * Julien Dubois :PosHold flight mode * Julian Oes :Pixhawk * Jonathan Challinger :Inertial Navigation, CompassMot, Spin-When-Armed * Kevin Hester :Andropilot GCS * Max Levine :Tri Support, Graphics * Leonard Hall :Flight Dynamics, Throttle, Loiter and Navigation Controllers * Marco Robustini :Lead tester * Michael Oborne :Mission Planner GCS * Mike Smith :Pixhawk driver, coding support * Olivier Adler :PPM Encoder, piezo buzzer * Pat Hickey :Hardware Abstraction Layer (HAL) * Robert Lefebvre :Heli Support, Copter LEDs * Roberto Navoni :Library testing, Porting to VRBrain * Sandro Benigno :Camera support, MinimOSD * Sandro Tognana :PosHold flight mode * ..and many more. * * Code commit statistics can be found here: https://github.com/ArduPilot/ardupilot/graphs/contributors * Wiki: http://copter.ardupilot.org/ * Requires modified version of Arduino, which can be found here: http://ardupilot.com/downloads/?category=6 * */ #include "Copter.h" #define SCHED_TASK(func, rate_hz, max_time_micros) SCHED_TASK_CLASS(Copter, &copter, func, rate_hz, max_time_micros) /* scheduler table for fast CPUs - all regular tasks apart from the fast_loop() should be listed here, along with how often they should be called (in hz) and the maximum time they are expected to take (in microseconds) */ const AP_Scheduler::Task Copter::scheduler_tasks[] = { SCHED_TASK(rc_loop, 100, 130), SCHED_TASK(throttle_loop, 50, 75), SCHED_TASK(update_GPS, 50, 200), #if OPTFLOW == ENABLED SCHED_TASK(update_optical_flow, 200, 160), #endif SCHED_TASK(update_batt_compass, 10, 120), SCHED_TASK(read_aux_switches, 10, 50), SCHED_TASK(arm_motors_check, 10, 50), SCHED_TASK(auto_disarm_check, 10, 50), SCHED_TASK(auto_trim, 10, 75), SCHED_TASK(read_rangefinder, 20, 100), SCHED_TASK(update_proximity, 100, 50), SCHED_TASK(update_altitude, 10, 100), SCHED_TASK(run_nav_updates, 50, 100), SCHED_TASK(update_throttle_hover,100, 90), SCHED_TASK(three_hz_loop, 3, 75), SCHED_TASK(compass_accumulate, 100, 100), SCHED_TASK(barometer_accumulate, 50, 90), #if PRECISION_LANDING == ENABLED SCHED_TASK(update_precland, 400, 50), #endif #if FRAME_CONFIG == HELI_FRAME SCHED_TASK(check_dynamic_flight, 50, 75), #endif SCHED_TASK(update_notify, 50, 90), SCHED_TASK(one_hz_loop, 1, 100), SCHED_TASK(ekf_check, 10, 75), SCHED_TASK(landinggear_update, 10, 75), SCHED_TASK(lost_vehicle_check, 10, 50), SCHED_TASK(gcs_check_input, 400, 180), SCHED_TASK(gcs_send_heartbeat, 1, 110), SCHED_TASK(gcs_send_deferred, 50, 550), SCHED_TASK(gcs_data_stream_send, 50, 550), SCHED_TASK(update_mount, 50, 75), SCHED_TASK(update_trigger, 50, 75), SCHED_TASK(ten_hz_logging_loop, 10, 350), SCHED_TASK(twentyfive_hz_logging, 25, 110), SCHED_TASK(dataflash_periodic, 400, 300), SCHED_TASK(perf_update, 0.1, 75), SCHED_TASK(read_receiver_rssi, 10, 75), SCHED_TASK(rpm_update, 10, 200), SCHED_TASK(compass_cal_update, 100, 100), SCHED_TASK(accel_cal_update, 10, 100), #if ADSB_ENABLED == ENABLED SCHED_TASK(avoidance_adsb_update, 10, 100), #endif #if ADVANCED_FAILSAFE == ENABLED SCHED_TASK(afs_fs_check, 10, 100), #endif SCHED_TASK(terrain_update, 10, 100), #if EPM_ENABLED == ENABLED SCHED_TASK(epm_update, 10, 75), #endif #ifdef USERHOOK_FASTLOOP SCHED_TASK(userhook_FastLoop, 100, 75), #endif #ifdef USERHOOK_50HZLOOP SCHED_TASK(userhook_50Hz, 50, 75), #endif #ifdef USERHOOK_MEDIUMLOOP SCHED_TASK(userhook_MediumLoop, 10, 75), #endif #ifdef USERHOOK_SLOWLOOP SCHED_TASK(userhook_SlowLoop, 3.3, 75), #endif #ifdef USERHOOK_SUPERSLOWLOOP SCHED_TASK(userhook_SuperSlowLoop, 1, 75), #endif SCHED_TASK(button_update, 5, 100), }; void Copter::setup() { cliSerial = hal.console; // Load the default values of variables listed in var_info[]s AP_Param::setup_sketch_defaults(); // setup storage layout for copter StorageManager::set_layout_copter(); init_ardupilot(); // initialise the main loop scheduler scheduler.init(&scheduler_tasks[0], ARRAY_SIZE(scheduler_tasks)); // setup initial performance counters perf_info_reset(); fast_loopTimer = AP_HAL::micros(); } /* if the compass is enabled then try to accumulate a reading */ void Copter::compass_accumulate(void) { if (g.compass_enabled) { compass.accumulate(); } } /* try to accumulate a baro reading */ void Copter::barometer_accumulate(void) { barometer.accumulate(); } void Copter::perf_update(void) { if (should_log(MASK_LOG_PM)) Log_Write_Performance(); if (scheduler.debug()) { gcs_send_text_fmt(MAV_SEVERITY_WARNING, "PERF: %u/%u %lu %lu\n", (unsigned)perf_info_get_num_long_running(), (unsigned)perf_info_get_num_loops(), (unsigned long)perf_info_get_max_time(), (unsigned long)perf_info_get_min_time()); } perf_info_reset(); pmTest1 = 0; } void Copter::loop() { // wait for an INS sample ins.wait_for_sample(); uint32_t timer = micros(); // check loop time perf_info_check_loop_time(timer - fast_loopTimer); // used by PI Loops G_Dt = (float)(timer - fast_loopTimer) / 1000000.0f; fast_loopTimer = timer; // for mainloop failure monitoring mainLoop_count++; // Execute the fast loop // --------------------- fast_loop(); // tell the scheduler one tick has passed scheduler.tick(); // run all the tasks that are due to run. Note that we only // have to call this once per loop, as the tasks are scheduled // in multiples of the main loop tick. So if they don't run on // the first call to the scheduler they won't run on a later // call until scheduler.tick() is called again uint32_t time_available = (timer + MAIN_LOOP_MICROS) - micros(); scheduler.run(time_available > MAIN_LOOP_MICROS ? 0u : time_available); } // Main loop - 400hz void Copter::fast_loop() { // IMU DCM Algorithm // -------------------- read_AHRS(); // run low level rate controllers that only require IMU data attitude_control.rate_controller_run(); #if FRAME_CONFIG == HELI_FRAME update_heli_control_dynamics(); #endif //HELI_FRAME // send outputs to the motors library motors_output(); // Inertial Nav // -------------------- read_inertia(); // check if ekf has reset target heading or position check_ekf_reset(); // run the attitude controllers update_flight_mode(); // update home from EKF if necessary update_home_from_EKF(); // check if we've landed or crashed update_land_and_crash_detectors(); #if MOUNT == ENABLED // camera mount's fast update camera_mount.update_fast(); #endif // log sensor health if (should_log(MASK_LOG_ANY)) { Log_Sensor_Health(); } } // rc_loops - reads user input from transmitter/receiver // called at 100hz void Copter::rc_loop() { // Read radio and 3-position switch on radio // ----------------------------------------- read_radio(); read_control_switch(); } // throttle_loop - should be run at 50 hz // --------------------------- void Copter::throttle_loop() { // update throttle_low_comp value (controls priority of throttle vs attitude control) update_throttle_thr_mix(); // check auto_armed status update_auto_armed(); #if FRAME_CONFIG == HELI_FRAME // update rotor speed heli_update_rotor_speed_targets(); // update trad heli swash plate movement heli_update_landing_swash(); #endif // compensate for ground effect (if enabled) update_ground_effect_detector(); } // update_mount - update camera mount position // should be run at 50hz void Copter::update_mount() { #if MOUNT == ENABLED // update camera mount's position camera_mount.update(); #endif } // update camera trigger void Copter::update_trigger(void) { #if CAMERA == ENABLED camera.trigger_pic_cleanup(); if (camera.check_trigger_pin()) { gcs_send_message(MSG_CAMERA_FEEDBACK); if (should_log(MASK_LOG_CAMERA)) { DataFlash.Log_Write_Camera(ahrs, gps, current_loc); } } #endif } // update_batt_compass - read battery and compass // should be called at 10hz void Copter::update_batt_compass(void) { // read battery before compass because it may be used for motor interference compensation read_battery(); if(g.compass_enabled) { // update compass with throttle value - used for compassmot compass.set_throttle(motors.get_throttle()); compass.read(); // log compass information if (should_log(MASK_LOG_COMPASS) && !ahrs.have_ekf_logging()) { DataFlash.Log_Write_Compass(compass); } } } // ten_hz_logging_loop // should be run at 10hz void Copter::ten_hz_logging_loop() { // log attitude data if we're not already logging at the higher rate if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST)) { Log_Write_Attitude(); DataFlash.Log_Write_Rate(ahrs, motors, attitude_control, pos_control); if (should_log(MASK_LOG_PID)) { DataFlash.Log_Write_PID(LOG_PIDR_MSG, attitude_control.get_rate_roll_pid().get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDP_MSG, attitude_control.get_rate_pitch_pid().get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDY_MSG, attitude_control.get_rate_yaw_pid().get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDA_MSG, g.pid_accel_z.get_pid_info() ); } } if (should_log(MASK_LOG_MOTBATT)) { Log_Write_MotBatt(); } if (should_log(MASK_LOG_RCIN)) { DataFlash.Log_Write_RCIN(); if (rssi.enabled()) { DataFlash.Log_Write_RSSI(rssi); } } if (should_log(MASK_LOG_RCOUT)) { DataFlash.Log_Write_RCOUT(); } if (should_log(MASK_LOG_NTUN) && (mode_requires_GPS(control_mode) || landing_with_GPS())) { Log_Write_Nav_Tuning(); } if (should_log(MASK_LOG_IMU) || should_log(MASK_LOG_IMU_FAST) || should_log(MASK_LOG_IMU_RAW)) { DataFlash.Log_Write_Vibration(ins); } if (should_log(MASK_LOG_CTUN)) { attitude_control.control_monitor_log(); Log_Write_Proximity(); } #if FRAME_CONFIG == HELI_FRAME Log_Write_Heli(); #endif } // fifty_hz_logging_loop // should be run at 50hz void Copter::twentyfive_hz_logging() { #if HIL_MODE != HIL_MODE_DISABLED // HIL for a copter needs very fast update of the servo values gcs_send_message(MSG_RADIO_OUT); #endif #if HIL_MODE == HIL_MODE_DISABLED if (should_log(MASK_LOG_ATTITUDE_FAST)) { Log_Write_Attitude(); DataFlash.Log_Write_Rate(ahrs, motors, attitude_control, pos_control); if (should_log(MASK_LOG_PID)) { DataFlash.Log_Write_PID(LOG_PIDR_MSG, attitude_control.get_rate_roll_pid().get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDP_MSG, attitude_control.get_rate_pitch_pid().get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDY_MSG, attitude_control.get_rate_yaw_pid().get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDA_MSG, g.pid_accel_z.get_pid_info() ); } } // log IMU data if we're not already logging at the higher rate if (should_log(MASK_LOG_IMU) && !should_log(MASK_LOG_IMU_RAW)) { DataFlash.Log_Write_IMU(ins); } #endif #if PRECISION_LANDING == ENABLED // log output Log_Write_Precland(); #endif } void Copter::dataflash_periodic(void) { DataFlash.periodic_tasks(); } // three_hz_loop - 3.3hz loop void Copter::three_hz_loop() { // check if we've lost contact with the ground station failsafe_gcs_check(); // check if we've lost terrain data failsafe_terrain_check(); #if AC_FENCE == ENABLED // check if we have breached a fence fence_check(); #endif // AC_FENCE_ENABLED #if SPRAYER == ENABLED sprayer.update(); #endif update_events(); // update ch6 in flight tuning tuning(); } // one_hz_loop - runs at 1Hz void Copter::one_hz_loop() { if (should_log(MASK_LOG_ANY)) { Log_Write_Data(DATA_AP_STATE, ap.value); } update_arming_checks(); if (!motors.armed()) { // make it possible to change ahrs orientation at runtime during initial config ahrs.set_orientation(); update_using_interlock(); #if FRAME_CONFIG != HELI_FRAME // check the user hasn't updated the frame orientation motors.set_frame_orientation(g.frame_orientation); // set all throttle channel settings motors.set_throttle_range(channel_throttle->get_radio_min(), channel_throttle->get_radio_max()); #endif } // update assigned functions and enable auxiliary servos RC_Channel_aux::enable_aux_servos(); check_usb_mux(); // update position controller alt limits update_poscon_alt_max(); // enable/disable raw gyro/accel logging ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW)); // log terrain data terrain_logging(); adsb.set_is_flying(!ap.land_complete); } // called at 50hz void Copter::update_GPS(void) { static uint32_t last_gps_reading[GPS_MAX_INSTANCES]; // time of last gps message bool gps_updated = false; gps.update(); // log after every gps message for (uint8_t i=0; i= AP_GPS::GPS_OK_FIX_3D) { #if CAMERA == ENABLED if (camera.update_location(current_loc, copter.ahrs) == true) { do_take_picture(); } #endif } } } void Copter::init_simple_bearing() { // capture current cos_yaw and sin_yaw values simple_cos_yaw = ahrs.cos_yaw(); simple_sin_yaw = ahrs.sin_yaw(); // initialise super simple heading (i.e. heading towards home) to be 180 deg from simple mode heading super_simple_last_bearing = wrap_360_cd(ahrs.yaw_sensor+18000); super_simple_cos_yaw = simple_cos_yaw; super_simple_sin_yaw = simple_sin_yaw; // log the simple bearing to dataflash if (should_log(MASK_LOG_ANY)) { Log_Write_Data(DATA_INIT_SIMPLE_BEARING, ahrs.yaw_sensor); } } // update_simple_mode - rotates pilot input if we are in simple mode void Copter::update_simple_mode(void) { float rollx, pitchx; // exit immediately if no new radio frame or not in simple mode if (ap.simple_mode == 0 || !ap.new_radio_frame) { return; } // mark radio frame as consumed ap.new_radio_frame = false; if (ap.simple_mode == 1) { // rotate roll, pitch input by -initial simple heading (i.e. north facing) rollx = channel_roll->get_control_in()*simple_cos_yaw - channel_pitch->get_control_in()*simple_sin_yaw; pitchx = channel_roll->get_control_in()*simple_sin_yaw + channel_pitch->get_control_in()*simple_cos_yaw; }else{ // rotate roll, pitch input by -super simple heading (reverse of heading to home) rollx = channel_roll->get_control_in()*super_simple_cos_yaw - channel_pitch->get_control_in()*super_simple_sin_yaw; pitchx = channel_roll->get_control_in()*super_simple_sin_yaw + channel_pitch->get_control_in()*super_simple_cos_yaw; } // rotate roll, pitch input from north facing to vehicle's perspective channel_roll->set_control_in(rollx*ahrs.cos_yaw() + pitchx*ahrs.sin_yaw()); channel_pitch->set_control_in(-rollx*ahrs.sin_yaw() + pitchx*ahrs.cos_yaw()); } // update_super_simple_bearing - adjusts simple bearing based on location // should be called after home_bearing has been updated void Copter::update_super_simple_bearing(bool force_update) { // check if we are in super simple mode and at least 10m from home if(force_update || (ap.simple_mode == 2 && home_distance > SUPER_SIMPLE_RADIUS)) { // check the bearing to home has changed by at least 5 degrees if (labs(super_simple_last_bearing - home_bearing) > 500) { super_simple_last_bearing = home_bearing; float angle_rad = radians((super_simple_last_bearing+18000)/100); super_simple_cos_yaw = cosf(angle_rad); super_simple_sin_yaw = sinf(angle_rad); } } } void Copter::read_AHRS(void) { // Perform IMU calculations and get attitude info //----------------------------------------------- #if HIL_MODE != HIL_MODE_DISABLED // update hil before ahrs update gcs_check_input(); #endif ahrs.update(); } // read baro and rangefinder altitude at 10hz void Copter::update_altitude() { // read in baro altitude read_barometer(); // write altitude info to dataflash logs if (should_log(MASK_LOG_CTUN)) { Log_Write_Control_Tuning(); } } AP_HAL_MAIN_CALLBACKS(&copter);