#include "Blimp.h" #include #define MA 0.99 #define MO (1-MA) void Loiter::run(Vector3f& target_pos, float& target_yaw, Vector4b axes_disabled) { const float dt = blimp.scheduler.get_last_loop_time_s(); float scaler_xz_n; float xz_out = fabsf(blimp.motors->front_out) + fabsf(blimp.motors->down_out); if (xz_out > 1) { scaler_xz_n = 1 / xz_out; } else { scaler_xz_n = 1; } scaler_xz = scaler_xz*MA + scaler_xz_n*MO; float scaler_yyaw_n; float yyaw_out = fabsf(blimp.motors->right_out) + fabsf(blimp.motors->yaw_out); if (yyaw_out > 1) { scaler_yyaw_n = 1 / yyaw_out; } else { scaler_yyaw_n = 1; } scaler_yyaw = scaler_yyaw*MA + scaler_yyaw_n*MO; #if HAL_LOGGING_ENABLED AP::logger().WriteStreaming("BSC", "TimeUS,xz,yyaw,xzn,yyawn", "Qffff", AP_HAL::micros64(), scaler_xz, scaler_yyaw, scaler_xz_n, scaler_yyaw_n); #endif float yaw_ef = blimp.ahrs.get_yaw(); Vector3f err_xyz = target_pos - blimp.pos_ned; float err_yaw = wrap_PI(target_yaw - yaw_ef); Vector4b zero; if ((fabsf(err_xyz.x) < blimp.g.pid_dz) || !blimp.motors->_armed || (blimp.g.dis_mask & (1<<(2-1)))) { zero.x = true; } if ((fabsf(err_xyz.y) < blimp.g.pid_dz) || !blimp.motors->_armed || (blimp.g.dis_mask & (1<<(1-1)))) { zero.y = true; } if ((fabsf(err_xyz.z) < blimp.g.pid_dz) || !blimp.motors->_armed || (blimp.g.dis_mask & (1<<(3-1)))) { zero.z = true; } if ((fabsf(err_yaw) < blimp.g.pid_dz) || !blimp.motors->_armed || (blimp.g.dis_mask & (1<<(4-1)))) { zero.yaw = true; } //Disabled means "don't update PIDs or output anything at all". Zero means actually output zero thrust. I term is limited in either case." Vector4b limit = zero || axes_disabled; Vector3f target_vel_ef; if (!axes_disabled.x && !axes_disabled.y) target_vel_ef = {blimp.pid_pos_xy.update_all(target_pos, blimp.pos_ned, dt, {(float)limit.x, (float)limit.y, (float)limit.z}), 0}; if (!axes_disabled.z) { target_vel_ef.z = blimp.pid_pos_z.update_all(target_pos.z, blimp.pos_ned.z, dt, limit.z); } float target_vel_yaw = 0; if (!axes_disabled.yaw) { target_vel_yaw = blimp.pid_pos_yaw.update_error(wrap_PI(target_yaw - yaw_ef), dt, limit.yaw); blimp.pid_pos_yaw.set_target_rate(target_yaw); blimp.pid_pos_yaw.set_actual_rate(yaw_ef); } Vector3f target_vel_ef_c{constrain_float(target_vel_ef.x, -blimp.g.max_vel_xy, blimp.g.max_vel_xy), constrain_float(target_vel_ef.y, -blimp.g.max_vel_xy, blimp.g.max_vel_xy), constrain_float(target_vel_ef.z, -blimp.g.max_vel_z, blimp.g.max_vel_z)}; float target_vel_yaw_c = constrain_float(target_vel_yaw, -blimp.g.max_vel_yaw, blimp.g.max_vel_yaw); Vector2f target_vel_ef_c_scaled_xy = {target_vel_ef_c.x * scaler_xz, target_vel_ef_c.y * scaler_yyaw}; Vector2f vel_ned_filtd_scaled_xy = {blimp.vel_ned_filtd.x * scaler_xz, blimp.vel_ned_filtd.y * scaler_yyaw}; Vector2f actuator; if (!axes_disabled.x && !axes_disabled.y) actuator = blimp.pid_vel_xy.update_all(target_vel_ef_c_scaled_xy, vel_ned_filtd_scaled_xy, dt, {(float)limit.x, (float)limit.y}); float act_down = 0; if (!axes_disabled.z) { act_down = blimp.pid_vel_z.update_all(target_vel_ef_c.z * scaler_xz, blimp.vel_ned_filtd.z * scaler_xz, dt, limit.z); } blimp.rotate_NE_to_BF(actuator); float act_yaw = 0; if (!axes_disabled.yaw) { act_yaw = blimp.pid_vel_yaw.update_all(target_vel_yaw_c * scaler_yyaw, blimp.vel_yaw_filtd * scaler_yyaw, dt, limit.yaw); } if (!blimp.motors->armed()) { blimp.pid_pos_xy.set_integrator(Vector2f(0,0)); blimp.pid_pos_z.set_integrator(0); blimp.pid_pos_yaw.set_integrator(0); blimp.pid_vel_xy.set_integrator(Vector2f(0,0)); blimp.pid_vel_z.set_integrator(0); blimp.pid_vel_yaw.set_integrator(0); target_pos = blimp.pos_ned; target_yaw = blimp.ahrs.get_yaw(); } if (zero.x) { blimp.motors->front_out = 0; } else if (axes_disabled.x); else { blimp.motors->front_out = actuator.x; } if (zero.y) { blimp.motors->right_out = 0; } else if (axes_disabled.y); else { blimp.motors->right_out = actuator.y; } if (zero.z) { blimp.motors->down_out = 0; } else if (axes_disabled.z); else { blimp.motors->down_out = act_down; } if (zero.yaw) { blimp.motors->yaw_out = 0; } else if (axes_disabled.yaw); else { blimp.motors->yaw_out = act_yaw; } #if HAL_LOGGING_ENABLED AC_PosControl::Write_PSCN(0.0, target_pos.x * 100.0, blimp.pos_ned.x * 100.0, 0.0, target_vel_ef_c.x * 100.0, blimp.vel_ned_filtd.x * 100.0, 0.0, 0.0, 0.0); AC_PosControl::Write_PSCE(0.0, target_pos.y * 100.0, blimp.pos_ned.y * 100.0, 0.0, target_vel_ef_c.y * 100.0, blimp.vel_ned_filtd.y * 100.0, 0.0, 0.0, 0.0); AC_PosControl::Write_PSCD(0.0, -target_pos.z * 100.0, -blimp.pos_ned.z * 100.0, 0.0, -target_vel_ef_c.z * 100.0, -blimp.vel_ned_filtd.z * 100.0, 0.0, 0.0, 0.0); #endif } void Loiter::run_vel(Vector3f& target_vel_ef, float& target_vel_yaw, Vector4b axes_disabled) { const float dt = blimp.scheduler.get_last_loop_time_s(); Vector4b zero; if (!blimp.motors->_armed || (blimp.g.dis_mask & (1<<(2-1)))) { zero.x = true; } if (!blimp.motors->_armed || (blimp.g.dis_mask & (1<<(1-1)))) { zero.y = true; } if (!blimp.motors->_armed || (blimp.g.dis_mask & (1<<(3-1)))) { zero.z = true; } if (!blimp.motors->_armed || (blimp.g.dis_mask & (1<<(4-1)))) { zero.yaw = true; } //Disabled means "don't update PIDs or output anything at all". Zero means actually output zero thrust. I term is limited in either case." Vector4b limit = zero || axes_disabled; Vector3f target_vel_ef_c{constrain_float(target_vel_ef.x, -blimp.g.max_vel_xy, blimp.g.max_vel_xy), constrain_float(target_vel_ef.y, -blimp.g.max_vel_xy, blimp.g.max_vel_xy), constrain_float(target_vel_ef.z, -blimp.g.max_vel_z, blimp.g.max_vel_z)}; float target_vel_yaw_c = constrain_float(target_vel_yaw, -blimp.g.max_vel_yaw, blimp.g.max_vel_yaw); Vector2f target_vel_ef_c_scaled_xy = {target_vel_ef_c.x * scaler_xz, target_vel_ef_c.y * scaler_yyaw}; Vector2f vel_ned_filtd_scaled_xy = {blimp.vel_ned_filtd.x * scaler_xz, blimp.vel_ned_filtd.y * scaler_yyaw}; Vector2f actuator; if (!axes_disabled.x && !axes_disabled.y) actuator = blimp.pid_vel_xy.update_all(target_vel_ef_c_scaled_xy, vel_ned_filtd_scaled_xy, dt, {(float)limit.x, (float)limit.y}); float act_down = 0; if (!axes_disabled.z) { act_down = blimp.pid_vel_z.update_all(target_vel_ef_c.z * scaler_xz, blimp.vel_ned_filtd.z * scaler_xz, dt, limit.z); } blimp.rotate_NE_to_BF(actuator); float act_yaw = 0; if (!axes_disabled.yaw) { act_yaw = blimp.pid_vel_yaw.update_all(target_vel_yaw_c * scaler_yyaw, blimp.vel_yaw_filtd * scaler_yyaw, dt, limit.yaw); } if (!blimp.motors->armed()) { blimp.pid_vel_xy.set_integrator(Vector2f(0,0)); blimp.pid_vel_z.set_integrator(0); blimp.pid_vel_yaw.set_integrator(0); } if (zero.x) { blimp.motors->front_out = 0; } else if (axes_disabled.x); else { blimp.motors->front_out = actuator.x; } if (zero.y) { blimp.motors->right_out = 0; } else if (axes_disabled.y); else { blimp.motors->right_out = actuator.y; } if (zero.z) { blimp.motors->down_out = 0; } else if (axes_disabled.z); else { blimp.motors->down_out = act_down; } if (zero.yaw) { blimp.motors->yaw_out = 0; } else if (axes_disabled.yaw); else { blimp.motors->yaw_out = act_yaw; } #if HAL_LOGGING_ENABLED AC_PosControl::Write_PSCN(0.0, 0.0, blimp.pos_ned.x * 100.0, 0.0, target_vel_ef_c.x * 100.0, blimp.vel_ned_filtd.x * 100.0, 0.0, 0.0, 0.0); AC_PosControl::Write_PSCE(0.0, 0.0, blimp.pos_ned.y * 100.0, 0.0, target_vel_ef_c.y * 100.0, blimp.vel_ned_filtd.y * 100.0, 0.0, 0.0, 0.0); AC_PosControl::Write_PSCD(0.0, 0.0, -blimp.pos_ned.z * 100.0, 0.0, -target_vel_ef_c.z * 100.0, -blimp.vel_ned_filtd.z * 100.0, 0.0, 0.0, 0.0); #endif }