/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
main Rover class, containing all vehicle specific state
*/
#pragma once
#include
#include
// Libraries
#include
#include
#include
#include
#include // interface and maths for accelerometer calibration
#include // ArduPilot Mega DCM Library
#include // needed for AHRS build
#include
#include // Battery monitor library
#include
#include // Camera triggering
#include // ArduPilot Mega Magnetometer Library
#include // Compass declination library
#include // Inertial Sensor (uncalibated IMU) Library
#include
#include // ArduPilot Mega Vector/Matrix math Library
#include // Mission command library
#include // Camera/Antenna mount
#include
#include
#include
#include // Optical Flow library
#include
#include // Range finder library
#include // RC input mapping library
#include // main loop scheduler
#include // statistics library
#include
#include // needed for AHRS build
#include
#include
#include
#include
#include
#include
#include // Mode Filter from Filter library
#include // Filter library - butterworth filter
#include // Filter library
#include
#include // Mode Filter from Filter library
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef ENABLE_SCRIPTING
#include
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include
#endif
// Local modules
#include "mode.h"
#include "AP_Arming.h"
#include "sailboat.h"
// Configuration
#include "config.h"
#include "defines.h"
#if ADVANCED_FAILSAFE == ENABLED
#include "afs_rover.h"
#endif
#include "Parameters.h"
#include "GCS_Mavlink.h"
#include "GCS_Rover.h"
#include "AP_Rally.h"
#include "RC_Channel.h" // RC Channel Library
class Rover : public AP_Vehicle {
public:
friend class GCS_MAVLINK_Rover;
friend class Parameters;
friend class ParametersG2;
friend class AP_Rally_Rover;
friend class AP_Arming_Rover;
#if ADVANCED_FAILSAFE == ENABLED
friend class AP_AdvancedFailsafe_Rover;
#endif
friend class GCS_Rover;
friend class Mode;
friend class ModeAcro;
friend class ModeAuto;
friend class ModeGuided;
friend class ModeHold;
friend class ModeLoiter;
friend class ModeSteering;
friend class ModeManual;
friend class ModeRTL;
friend class ModeSmartRTL;
friend class ModeFollow;
friend class ModeSimple;
friend class RC_Channel_Rover;
friend class RC_Channels_Rover;
friend class Sailboat;
Rover(void);
private:
// must be the first AP_Param variable declared to ensure its
// constructor runs before the constructors of the other AP_Param
// variables
AP_Param param_loader;
// all settable parameters
Parameters g;
ParametersG2 g2;
// mapping between input channels
RCMapper rcmap;
// primary control channels
RC_Channel *channel_steer;
RC_Channel *channel_throttle;
RC_Channel *channel_lateral;
RC_Channel *channel_roll;
RC_Channel *channel_pitch;
RC_Channel *channel_walking_height;
AP_Logger logger;
// flight modes convenience array
AP_Int8 *modes;
const uint8_t num_modes = 6;
// AP_RPM Module
AP_RPM rpm_sensor;
// Arming/Disarming management class
AP_Arming_Rover arming;
AP_L1_Control L1_controller{ahrs, nullptr};
OpticalFlow optflow;
#if OSD_ENABLED || OSD_PARAM_ENABLED
AP_OSD osd;
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
SITL::SIM sitl;
#endif
// GCS handling
GCS_Rover _gcs; // avoid using this; use gcs()
GCS_Rover &gcs() { return _gcs; }
// RC Channels:
RC_Channels_Rover &rc() { return g2.rc_channels; }
// The rover's current location
struct Location current_loc;
// Camera
#if CAMERA == ENABLED
AP_Camera camera{MASK_LOG_CAMERA, current_loc};
#endif
// Camera/Antenna mount tracking and stabilisation stuff
#if HAL_MOUNT_ENABLED
AP_Mount camera_mount;
#endif
// true if initialisation has completed
bool initialised;
// This is the state of the flight control system
// There are multiple states defined such as MANUAL, AUTO, ...
Mode *control_mode;
// Used to maintain the state of the previous control switch position
// This is set to -1 when we need to re-read the switch
uint8_t oldSwitchPosition;
// structure for holding failsafe state
struct {
uint8_t bits; // bit flags of failsafes that have started (but not necessarily triggered an action)
uint32_t start_time; // start time of the earliest failsafe
uint8_t triggered; // bit flags of failsafes that have triggered an action
uint32_t last_valid_rc_ms; // system time of most recent RC input from pilot
bool ekf;
} failsafe;
// true if we have a position estimate from AHRS
bool have_position;
// range finder last update (used for DPTH logging)
uint32_t rangefinder_last_reading_ms;
// Ground speed
// The amount current ground speed is below min ground speed. meters per second
float ground_speed;
// Battery Sensors
AP_BattMonitor battery{MASK_LOG_CURRENT,
FUNCTOR_BIND_MEMBER(&Rover::handle_battery_failsafe, void, const char*, const int8_t),
_failsafe_priorities};
// flyforward timer
uint32_t flyforward_start_ms;
static const AP_Scheduler::Task scheduler_tasks[];
static const AP_Param::Info var_info[];
static const LogStructure log_structure[];
// time that rudder/steering arming has been running
uint32_t rudder_arm_timer;
// latest wheel encoder values
float wheel_encoder_last_distance_m[WHEELENCODER_MAX_INSTANCES]; // total distance recorded by wheel encoder (for reporting to GCS)
bool wheel_encoder_initialised; // true once arrays below have been initialised to sensors initial values
float wheel_encoder_last_angle_rad[WHEELENCODER_MAX_INSTANCES]; // distance in radians at time of last update to EKF
uint32_t wheel_encoder_last_reading_ms[WHEELENCODER_MAX_INSTANCES]; // system time of last ping from each encoder
uint8_t wheel_encoder_last_index_sent; // index of the last wheel encoder sent to the EKF
// True when we are doing motor test
bool motor_test;
ModeInitializing mode_initializing;
ModeHold mode_hold;
ModeManual mode_manual;
ModeAcro mode_acro;
ModeGuided mode_guided;
ModeAuto mode_auto;
ModeLoiter mode_loiter;
ModeSteering mode_steering;
ModeRTL mode_rtl;
ModeSmartRTL mode_smartrtl;
ModeFollow mode_follow;
ModeSimple mode_simple;
// cruise throttle and speed learning
typedef struct {
LowPassFilterFloat speed_filt{2.0f};
LowPassFilterFloat throttle_filt{2.0f};
uint32_t learn_start_ms;
uint32_t log_count;
} cruise_learn_t;
cruise_learn_t cruise_learn;
private:
// Rover.cpp
#ifdef ENABLE_SCRIPTING
bool set_target_location(const Location& target_loc) override;
bool set_target_velocity_NED(const Vector3f& vel_ned) override;
bool set_steering_and_throttle(float steering, float throttle) override;
bool get_control_output(AP_Vehicle::ControlOutput control_output, float &control_value) override;
#endif // ENABLE_SCRIPTING
void stats_update();
void ahrs_update();
void gcs_failsafe_check(void);
void update_logging1(void);
void update_logging2(void);
void one_second_loop(void);
void update_current_mode(void);
void update_mission(void);
// balance_bot.cpp
void balancebot_pitch_control(float &throttle);
bool is_balancebot() const;
// commands.cpp
bool set_home_to_current_location(bool lock) WARN_IF_UNUSED;
bool set_home(const Location& loc, bool lock) WARN_IF_UNUSED;
void update_home();
// crash_check.cpp
void crash_check();
// cruise_learn.cpp
void cruise_learn_start();
void cruise_learn_update();
void cruise_learn_complete();
void log_write_cruise_learn() const;
// ekf_check.cpp
void ekf_check();
bool ekf_over_threshold();
bool ekf_position_ok();
void failsafe_ekf_event();
void failsafe_ekf_off_event(void);
// failsafe.cpp
void failsafe_trigger(uint8_t failsafe_type, const char* type_str, bool on);
void handle_battery_failsafe(const char* type_str, const int8_t action);
#if ADVANCED_FAILSAFE == ENABLED
void afs_fs_check(void);
#endif
// fence.cpp
void fence_check();
// GCS_Mavlink.cpp
void send_wheel_encoder_distance(mavlink_channel_t chan);
// Log.cpp
void Log_Write_Attitude();
void Log_Write_Depth();
void Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target);
void Log_Write_Nav_Tuning();
void Log_Write_Sail();
void Log_Write_Startup(uint8_t type);
void Log_Write_Steering();
void Log_Write_Throttle();
void Log_Write_RC(void);
void Log_Write_Vehicle_Startup_Messages();
void Log_Read(uint16_t log_num, uint16_t start_page, uint16_t end_page);
void log_init(void);
// mode.cpp
Mode *mode_from_mode_num(enum Mode::Number num);
// Parameters.cpp
void load_parameters(void) override;
// radio.cpp
void set_control_channels(void) override;
void init_rc_in();
void rudder_arm_disarm_check();
void read_radio();
void radio_failsafe_check(uint16_t pwm);
bool trim_radio();
// sensors.cpp
void update_compass(void);
void compass_save(void);
void update_wheel_encoder();
void accel_cal_update(void);
void read_rangefinders(void);
void read_airspeed();
void rpm_update(void);
// Steering.cpp
void set_servos(void);
// Rover.cpp
void get_scheduler_tasks(const AP_Scheduler::Task *&tasks,
uint8_t &task_count,
uint32_t &log_bit) override;
// system.cpp
void init_ardupilot() override;
void startup_ground(void);
void update_ahrs_flyforward();
bool set_mode(Mode &new_mode, ModeReason reason);
bool set_mode(const uint8_t new_mode, ModeReason reason) override;
uint8_t get_mode() const override { return (uint8_t)control_mode->mode_number(); }
bool mavlink_set_mode(uint8_t mode);
void startup_INS_ground(void);
void notify_mode(const Mode *new_mode);
uint8_t check_digital_pin(uint8_t pin);
bool should_log(uint32_t mask);
bool is_boat() const;
// vehicle specific waypoint info helpers
bool get_wp_distance_m(float &distance) const override;
bool get_wp_bearing_deg(float &bearing) const override;
bool get_wp_crosstrack_error_m(float &xtrack_error) const override;
enum Failsafe_Action {
Failsafe_Action_None = 0,
Failsafe_Action_RTL = 1,
Failsafe_Action_Hold = 2,
Failsafe_Action_SmartRTL = 3,
Failsafe_Action_SmartRTL_Hold = 4,
Failsafe_Action_Terminate = 5
};
enum class Failsafe_Options : uint32_t {
Failsafe_Option_Active_In_Hold = (1<<0)
};
static constexpr int8_t _failsafe_priorities[] = {
Failsafe_Action_Terminate,
Failsafe_Action_Hold,
Failsafe_Action_RTL,
Failsafe_Action_SmartRTL_Hold,
Failsafe_Action_SmartRTL,
Failsafe_Action_None,
-1 // the priority list must end with a sentinel of -1
};
static_assert(_failsafe_priorities[ARRAY_SIZE(_failsafe_priorities) - 1] == -1,
"_failsafe_priorities is missing the sentinel");
public:
void failsafe_check();
// Motor test
void motor_test_output();
bool mavlink_motor_test_check(const GCS_MAVLINK &gcs_chan, bool check_rc, AP_MotorsUGV::motor_test_order motor_instance, uint8_t throttle_type, int16_t throttle_value);
MAV_RESULT mavlink_motor_test_start(const GCS_MAVLINK &gcs_chan, AP_MotorsUGV::motor_test_order motor_instance, uint8_t throttle_type, int16_t throttle_value, float timeout_sec);
void motor_test_stop();
// frame type
uint8_t get_frame_type() const { return g2.frame_type.get(); }
AP_WheelRateControl& get_wheel_rate_control() { return g2.wheel_rate_control; }
// Simple mode
float simple_sin_yaw;
};
extern Rover rover;
using AP_HAL::millis;
using AP_HAL::micros;