/* AP_RC_Channel.cpp - Radio library for Arduino Legacy Hardware Code by Jason Short. DIYDrones.com This library is free software; you can redistribute it and / or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. */ #include #include #if defined(ARDUINO) && ARDUINO >= 100 #include "Arduino.h" #else #include "WProgram.h" #endif #include "AP_RC_Channel.h" #define ANGLE 0 #define RANGE 1 // setup the control preferences void AP_RC_Channel::set_range(int low, int high) { _type = RANGE; _high = high; _low = low; } void AP_RC_Channel::set_angle(int angle) { _type = ANGLE; _high = angle; } void AP_RC_Channel::set_reverse(bool reverse) { if (reverse) _reverse = -1; else _reverse = 1; } bool AP_RC_Channel::get_reverse(void) { if (_reverse==-1) return 1; else return 0; } void AP_RC_Channel::set_filter(bool filter) { _filter = filter; } // call after first read void AP_RC_Channel::trim() { radio_trim = radio_in; } // read input from APM_RC - create a control_in value void AP_RC_Channel::set_pwm(int pwm) { //Serial.print(pwm,DEC); if(_filter){ if(radio_in == 0) radio_in = pwm; else radio_in = ((pwm + radio_in) >> 1); // Small filtering }else{ radio_in = pwm; } if(_type == RANGE){ //Serial.print("range "); control_in = pwm_to_range(); control_in = (control_in < dead_zone) ? 0 : control_in; }else{ control_in = pwm_to_angle(); control_in = (abs(control_in) < dead_zone) ? 0 : control_in; /* // coming soon ?? if(expo) { long temp = control_in; temp = (temp * temp) / (long)_high; control_in = (int)((control_in >= 0) ? temp : -temp); } */ } } int AP_RC_Channel::control_mix(float value) { return (1 - abs(control_in / _high)) * value + control_in; } // are we below a threshold? bool AP_RC_Channel::get_failsafe(void) { return (radio_in < (radio_min - 50)); } // returns just the PWM without the offset from radio_min void AP_RC_Channel::calc_pwm(void) { if(_type == RANGE){ pwm_out = range_to_pwm(); radio_out = pwm_out + radio_min; }else{ pwm_out = angle_to_pwm(); radio_out = pwm_out + radio_trim; } radio_out = constrain(radio_out, radio_min, radio_max); } // ------------------------------------------ void AP_RC_Channel::load_eeprom(void) { radio_min = eeprom_read_word((uint16_t *) _address); radio_max = eeprom_read_word((uint16_t *) (_address + 2)); load_trim(); } void AP_RC_Channel::save_eeprom(void) { eeprom_write_word((uint16_t *) _address, radio_min); eeprom_write_word((uint16_t *) (_address + 2), radio_max); save_trim(); } // ------------------------------------------ void AP_RC_Channel::save_trim(void) { eeprom_write_word((uint16_t *) (_address + 4), radio_trim); //_ee.write_int((_address + 4), radio_trim); } void AP_RC_Channel::load_trim(void) { radio_trim = eeprom_read_word((uint16_t *) (_address + 4)); //_ee.write_int((_address + 4), radio_trim); } // ------------------------------------------ void AP_RC_Channel::zero_min_max() { radio_min = radio_max = radio_in; } void AP_RC_Channel::update_min_max() { radio_min = min(radio_min, radio_in); radio_max = max(radio_max, radio_in); } // ------------------------------------------ int16_t AP_RC_Channel::pwm_to_angle() { if(radio_in < radio_trim) return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_trim - radio_min); else return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_max - radio_trim); //return _reverse * _high * ((float)(radio_in - radio_trim) / (float)(radio_max - radio_trim)); //return _reverse * _high * ((float)(radio_in - radio_trim) / (float)(radio_trim - radio_min)); } int16_t AP_RC_Channel::angle_to_pwm() { if(_reverse == -1) { if(servo_out < 0) return ( -1 * ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high); else return ( -1 * ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high); } else { if(servo_out > 0) return ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high; else return ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high; } //return (((float)servo_out / (float)_high) * (float)(radio_max - radio_trim)); //return (((float)servo_out / (float)_high) * (float)(radio_trim - radio_min)); } // ------------------------------------------ int16_t AP_RC_Channel::pwm_to_range() { //return (_low + ((_high - _low) * ((float)(radio_in - radio_min) / (float)(radio_max - radio_min)))); return (_low + ((long)(_high - _low) * (long)(radio_in - radio_min)) / (long)(radio_max - radio_min)); } int16_t AP_RC_Channel::range_to_pwm() { //return (((float)(servo_out - _low) / (float)(_high - _low)) * (float)(radio_max - radio_min)); return ((long)(servo_out - _low) * (long)(radio_max - radio_min)) / (long)(_high - _low); } // ------------------------------------------ float AP_RC_Channel::norm_input() { if(radio_in < radio_trim) return _reverse * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min); else return _reverse * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim); } float AP_RC_Channel::norm_output() { if(radio_out < radio_trim) return (float)(radio_out - radio_trim) / (float)(radio_trim - radio_min); else return (float)(radio_out - radio_trim) / (float)(radio_max - radio_trim); }