#include "Copter.h" /***************************************************************************** * The init_ardupilot function processes everything we need for an in - air restart * We will determine later if we are actually on the ground and process a * ground start in that case. * *****************************************************************************/ static void mavlink_delay_cb_static() { copter.mavlink_delay_cb(); } static void failsafe_check_static() { copter.failsafe_check(); } void Copter::init_ardupilot() { // initialise serial port serial_manager.init_console(); hal.console->printf("\n\nInit %s" "\n\nFree RAM: %u\n", AP::fwversion().fw_string, (unsigned)hal.util->available_memory()); // // Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function) // report_version(); // load parameters from EEPROM load_parameters(); // time per loop - this gets updated in the main loop() based on // actual loop rate G_Dt = 1.0 / scheduler.get_loop_rate_hz(); #if STATS_ENABLED == ENABLED // initialise stats module g2.stats.init(); #endif // identify ourselves correctly with the ground station mavlink_system.sysid = g.sysid_this_mav; // initialise serial ports serial_manager.init(); // setup first port early to allow BoardConfig to report errors gcs().chan(0).setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0); // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); BoardConfig.init(); #if HAL_WITH_UAVCAN BoardConfig_CAN.init(); #endif // init cargo gripper #if GRIPPER_ENABLED == ENABLED g2.gripper.init(); #endif // init winch and wheel encoder winch_init(); // initialise notify system notify.init(); notify_flight_mode(); // initialise battery monitor battery.init(); // Init RSSI rssi.init(); barometer.init(); // setup telem slots with serial ports gcs().setup_uarts(serial_manager); #if OSD_ENABLED == ENABLED osd.init(); #endif #if LOGGING_ENABLED == ENABLED log_init(); #endif // update motor interlock state update_using_interlock(); #if FRAME_CONFIG == HELI_FRAME // trad heli specific initialisation heli_init(); #endif #if FRAME_CONFIG == HELI_FRAME input_manager.set_loop_rate(scheduler.get_loop_rate_hz()); #endif init_rc_in(); // sets up rc channels from radio // default frame class to match firmware if possible set_default_frame_class(); // allocate the motors class allocate_motors(); // sets up motors and output to escs init_rc_out(); // motors initialised so parameters can be sent ap.initialised_params = true; relay.init(); /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); #if BEACON_ENABLED == ENABLED // give AHRS the range beacon sensor ahrs.set_beacon(&g2.beacon); #endif // Do GPS init gps.set_log_gps_bit(MASK_LOG_GPS); gps.init(serial_manager); AP::compass().init(); #if OPTFLOW == ENABLED // make optflow available to AHRS ahrs.set_optflow(&optflow); #endif // init Location class #if AP_TERRAIN_AVAILABLE && AC_TERRAIN Location::set_terrain(&terrain); wp_nav->set_terrain(&terrain); #endif #if AC_AVOID_ENABLED == ENABLED wp_nav->set_avoidance(&avoid); loiter_nav->set_avoidance(&avoid); #endif attitude_control->parameter_sanity_check(); pos_control->set_dt(scheduler.get_loop_period_s()); // init the optical flow sensor init_optflow(); #if MOUNT == ENABLED // initialise camera mount camera_mount.init(serial_manager); #endif #if PRECISION_LANDING == ENABLED // initialise precision landing init_precland(); #endif // initialise landing gear position landinggear.init(); #ifdef USERHOOK_INIT USERHOOK_INIT #endif #if HIL_MODE != HIL_MODE_DISABLED while (barometer.get_last_update() == 0) { // the barometer begins updating when we get the first // HIL_STATE message gcs().send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message"); delay(1000); } // set INS to HIL mode ins.set_hil_mode(); #endif // read Baro pressure at ground //----------------------------- barometer.set_log_baro_bit(MASK_LOG_IMU); barometer.calibrate(); // initialise rangefinder init_rangefinder(); // init proximity sensor init_proximity(); #if BEACON_ENABLED == ENABLED // init beacons used for non-gps position estimation g2.beacon.init(); #endif // init visual odometry init_visual_odom(); #if RPM_ENABLED == ENABLED // initialise AP_RPM library rpm_sensor.init(); #endif #if MODE_AUTO_ENABLED == ENABLED // initialise mission library mode_auto.mission.init(); #endif #if MODE_SMARTRTL_ENABLED == ENABLED // initialize SmartRTL g2.smart_rtl.init(); #endif // initialise AP_Logger library logger.setVehicle_Startup_Writer(FUNCTOR_BIND(&copter, &Copter::Log_Write_Vehicle_Startup_Messages, void)); // initialise rc channels including setting mode rc().init(); startup_INS_ground(); #ifdef ENABLE_SCRIPTING if (!g2.scripting.init()) { gcs().send_text(MAV_SEVERITY_ERROR, "Scripting failed to start"); } #endif // ENABLE_SCRIPTING // set landed flags set_land_complete(true); set_land_complete_maybe(true); // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we are // ready to fly serial_manager.set_blocking_writes_all(false); // enable CPU failsafe failsafe_enable(); ins.set_log_raw_bit(MASK_LOG_IMU_RAW); // enable output to motors if (arming.rc_calibration_checks(true)) { enable_motor_output(); } // disable safety if requested BoardConfig.init_safety(); hal.console->printf("\nReady to FLY "); // flag that initialisation has completed ap.initialised = true; } //****************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //****************************************************************************** void Copter::startup_INS_ground() { // initialise ahrs (may push imu calibration into the mpu6000 if using that device). ahrs.init(); ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER); // Warm up and calibrate gyro offsets ins.init(scheduler.get_loop_rate_hz()); // reset ahrs including gyro bias ahrs.reset(); } // position_ok - returns true if the horizontal absolute position is ok and home position is set bool Copter::position_ok() { // return false if ekf failsafe has triggered if (failsafe.ekf) { return false; } // check ekf position estimate return (ekf_position_ok() || optflow_position_ok()); } // ekf_position_ok - returns true if the ekf claims it's horizontal absolute position estimate is ok and home position is set bool Copter::ekf_position_ok() { if (!ahrs.have_inertial_nav()) { // do not allow navigation with dcm position return false; } // with EKF use filter status and ekf check nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal position if (!motors->armed()) { return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs)); } else { // once armed we require a good absolute position and EKF must not be in const_pos_mode return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode); } } // optflow_position_ok - returns true if optical flow based position estimate is ok bool Copter::optflow_position_ok() { #if OPTFLOW != ENABLED && VISUAL_ODOMETRY_ENABLED != ENABLED return false; #else // return immediately if EKF not used if (!ahrs.have_inertial_nav()) { return false; } // return immediately if neither optflow nor visual odometry is enabled bool enabled = false; #if OPTFLOW == ENABLED if (optflow.enabled()) { enabled = true; } #endif #if VISUAL_ODOMETRY_ENABLED == ENABLED if (g2.visual_odom.enabled()) { enabled = true; } #endif if (!enabled) { return false; } // get filter status from EKF nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal relative position if (!motors->armed()) { return (filt_status.flags.pred_horiz_pos_rel); } else { return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode); } #endif } // update_auto_armed - update status of auto_armed flag void Copter::update_auto_armed() { // disarm checks if(ap.auto_armed){ // if motors are disarmed, auto_armed should also be false if(!motors->armed()) { set_auto_armed(false); return; } // if in stabilize or acro flight mode and throttle is zero, auto-armed should become false if(flightmode->has_manual_throttle() && ap.throttle_zero && !failsafe.radio) { set_auto_armed(false); } // if helicopters are on the ground, and the motor is switched off, auto-armed should be false // so that rotor runup is checked again before attempting to take-off if(ap.land_complete && motors->get_spool_mode() != AP_Motors::THROTTLE_UNLIMITED && ap.using_interlock) { set_auto_armed(false); } }else{ // arm checks // for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true if(motors->armed() && ap.using_interlock) { if(!ap.throttle_zero && motors->get_spool_mode() == AP_Motors::THROTTLE_UNLIMITED) { set_auto_armed(true); } // if motors are armed and throttle is above zero auto_armed should be true // if motors are armed and we are in throw mode, then auto_armed should be true } else if (motors->armed() && !ap.using_interlock) { if(!ap.throttle_zero || control_mode == THROW) { set_auto_armed(true); } } } } /* should we log a message type now? */ bool Copter::should_log(uint32_t mask) { #if LOGGING_ENABLED == ENABLED ap.logging_started = logger.logging_started(); return logger.should_log(mask); #else return false; #endif } // default frame_class to match firmware if possible void Copter::set_default_frame_class() { if (FRAME_CONFIG == HELI_FRAME && g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI_DUAL && g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI_QUAD) { g2.frame_class.set(AP_Motors::MOTOR_FRAME_HELI); } } // return MAV_TYPE corresponding to frame class MAV_TYPE Copter::get_frame_mav_type() { switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { case AP_Motors::MOTOR_FRAME_QUAD: case AP_Motors::MOTOR_FRAME_UNDEFINED: return MAV_TYPE_QUADROTOR; case AP_Motors::MOTOR_FRAME_HEXA: case AP_Motors::MOTOR_FRAME_Y6: return MAV_TYPE_HEXAROTOR; case AP_Motors::MOTOR_FRAME_OCTA: case AP_Motors::MOTOR_FRAME_OCTAQUAD: return MAV_TYPE_OCTOROTOR; case AP_Motors::MOTOR_FRAME_HELI: case AP_Motors::MOTOR_FRAME_HELI_DUAL: case AP_Motors::MOTOR_FRAME_HELI_QUAD: return MAV_TYPE_HELICOPTER; case AP_Motors::MOTOR_FRAME_TRI: return MAV_TYPE_TRICOPTER; case AP_Motors::MOTOR_FRAME_SINGLE: case AP_Motors::MOTOR_FRAME_COAX: case AP_Motors::MOTOR_FRAME_TAILSITTER: return MAV_TYPE_COAXIAL; case AP_Motors::MOTOR_FRAME_DODECAHEXA: return MAV_TYPE_DODECAROTOR; } // unknown frame so return generic return MAV_TYPE_GENERIC; } // return string corresponding to frame_class const char* Copter::get_frame_string() { switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { case AP_Motors::MOTOR_FRAME_QUAD: return "QUAD"; case AP_Motors::MOTOR_FRAME_HEXA: return "HEXA"; case AP_Motors::MOTOR_FRAME_Y6: return "Y6"; case AP_Motors::MOTOR_FRAME_OCTA: return "OCTA"; case AP_Motors::MOTOR_FRAME_OCTAQUAD: return "OCTA_QUAD"; case AP_Motors::MOTOR_FRAME_HELI: return "HELI"; case AP_Motors::MOTOR_FRAME_HELI_DUAL: return "HELI_DUAL"; case AP_Motors::MOTOR_FRAME_HELI_QUAD: return "HELI_QUAD"; case AP_Motors::MOTOR_FRAME_TRI: return "TRI"; case AP_Motors::MOTOR_FRAME_SINGLE: return "SINGLE"; case AP_Motors::MOTOR_FRAME_COAX: return "COAX"; case AP_Motors::MOTOR_FRAME_TAILSITTER: return "TAILSITTER"; case AP_Motors::MOTOR_FRAME_DODECAHEXA: return "DODECA_HEXA"; case AP_Motors::MOTOR_FRAME_UNDEFINED: default: return "UNKNOWN"; } } /* allocate the motors class */ void Copter::allocate_motors(void) { switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { #if FRAME_CONFIG != HELI_FRAME case AP_Motors::MOTOR_FRAME_QUAD: case AP_Motors::MOTOR_FRAME_HEXA: case AP_Motors::MOTOR_FRAME_Y6: case AP_Motors::MOTOR_FRAME_OCTA: case AP_Motors::MOTOR_FRAME_OCTAQUAD: case AP_Motors::MOTOR_FRAME_DODECAHEXA: default: motors = new AP_MotorsMatrix(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsMatrix::var_info; break; case AP_Motors::MOTOR_FRAME_TRI: motors = new AP_MotorsTri(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsTri::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_TRICOPTER); break; case AP_Motors::MOTOR_FRAME_SINGLE: motors = new AP_MotorsSingle(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsSingle::var_info; break; case AP_Motors::MOTOR_FRAME_COAX: motors = new AP_MotorsCoax(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsCoax::var_info; break; case AP_Motors::MOTOR_FRAME_TAILSITTER: motors = new AP_MotorsTailsitter(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsTailsitter::var_info; break; #else // FRAME_CONFIG == HELI_FRAME case AP_Motors::MOTOR_FRAME_HELI_DUAL: motors = new AP_MotorsHeli_Dual(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsHeli_Dual::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); break; case AP_Motors::MOTOR_FRAME_HELI_QUAD: motors = new AP_MotorsHeli_Quad(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsHeli_Quad::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); break; case AP_Motors::MOTOR_FRAME_HELI: default: motors = new AP_MotorsHeli_Single(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsHeli_Single::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); break; #endif } if (motors == nullptr) { AP_HAL::panic("Unable to allocate FRAME_CLASS=%u", (unsigned)g2.frame_class.get()); } AP_Param::load_object_from_eeprom(motors, motors_var_info); ahrs_view = ahrs.create_view(ROTATION_NONE); if (ahrs_view == nullptr) { AP_HAL::panic("Unable to allocate AP_AHRS_View"); } const struct AP_Param::GroupInfo *ac_var_info; #if FRAME_CONFIG != HELI_FRAME attitude_control = new AC_AttitudeControl_Multi(*ahrs_view, aparm, *motors, scheduler.get_loop_period_s()); ac_var_info = AC_AttitudeControl_Multi::var_info; #else attitude_control = new AC_AttitudeControl_Heli(*ahrs_view, aparm, *motors, scheduler.get_loop_period_s()); ac_var_info = AC_AttitudeControl_Heli::var_info; #endif if (attitude_control == nullptr) { AP_HAL::panic("Unable to allocate AttitudeControl"); } AP_Param::load_object_from_eeprom(attitude_control, ac_var_info); pos_control = new AC_PosControl(*ahrs_view, inertial_nav, *motors, *attitude_control); if (pos_control == nullptr) { AP_HAL::panic("Unable to allocate PosControl"); } AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info); wp_nav = new AC_WPNav(inertial_nav, *ahrs_view, *pos_control, *attitude_control); if (wp_nav == nullptr) { AP_HAL::panic("Unable to allocate WPNav"); } AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info); loiter_nav = new AC_Loiter(inertial_nav, *ahrs_view, *pos_control, *attitude_control); if (loiter_nav == nullptr) { AP_HAL::panic("Unable to allocate LoiterNav"); } AP_Param::load_object_from_eeprom(loiter_nav, loiter_nav->var_info); #if MODE_CIRCLE_ENABLED == ENABLED circle_nav = new AC_Circle(inertial_nav, *ahrs_view, *pos_control); if (circle_nav == nullptr) { AP_HAL::panic("Unable to allocate CircleNav"); } AP_Param::load_object_from_eeprom(circle_nav, circle_nav->var_info); #endif // reload lines from the defaults file that may now be accessible AP_Param::reload_defaults_file(true); // now setup some frame-class specific defaults switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { case AP_Motors::MOTOR_FRAME_Y6: attitude_control->get_rate_roll_pid().kP().set_default(0.1); attitude_control->get_rate_roll_pid().kD().set_default(0.006); attitude_control->get_rate_pitch_pid().kP().set_default(0.1); attitude_control->get_rate_pitch_pid().kD().set_default(0.006); attitude_control->get_rate_yaw_pid().kP().set_default(0.15); attitude_control->get_rate_yaw_pid().kI().set_default(0.015); break; case AP_Motors::MOTOR_FRAME_TRI: attitude_control->get_rate_yaw_pid().filt_hz().set_default(100); break; default: break; } // brushed 16kHz defaults to 16kHz pulses if (motors->get_pwm_type() == AP_Motors::PWM_TYPE_BRUSHED) { g.rc_speed.set_default(16000); } if (upgrading_frame_params) { // do frame specific upgrade. This is only done the first time we run the new firmware #if FRAME_CONFIG == HELI_FRAME SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 12, CH_1); SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 13, CH_2); SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 14, CH_3); SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 15, CH_4); #else if (g2.frame_class == AP_Motors::MOTOR_FRAME_TRI) { const AP_Param::ConversionInfo tri_conversion_info[] = { { Parameters::k_param_motors, 32, AP_PARAM_INT16, "SERVO7_TRIM" }, { Parameters::k_param_motors, 33, AP_PARAM_INT16, "SERVO7_MIN" }, { Parameters::k_param_motors, 34, AP_PARAM_INT16, "SERVO7_MAX" }, { Parameters::k_param_motors, 35, AP_PARAM_FLOAT, "MOT_YAW_SV_ANGLE" }, }; // we need to use CONVERT_FLAG_FORCE as the SERVO7_* parameters will already be set from RC7_* AP_Param::convert_old_parameters(tri_conversion_info, ARRAY_SIZE(tri_conversion_info), AP_Param::CONVERT_FLAG_FORCE); const AP_Param::ConversionInfo tri_conversion_info_rev { Parameters::k_param_motors, 31, AP_PARAM_INT8, "SERVO7_REVERSED" }; AP_Param::convert_old_parameter(&tri_conversion_info_rev, 1, AP_Param::CONVERT_FLAG_REVERSE | AP_Param::CONVERT_FLAG_FORCE); // AP_MotorsTri was converted from having nested var_info to one level AP_Param::convert_parent_class(Parameters::k_param_motors, motors, motors->var_info); } #endif } // upgrade parameters. This must be done after allocating the objects convert_pid_parameters(); #if FRAME_CONFIG == HELI_FRAME convert_tradheli_parameters(); #endif } bool Copter::is_tradheli() const { #if FRAME_CONFIG == HELI_FRAME return true; #else return false; #endif }