#include "LCrystal.h" #include #include #include #include extern const AP_HAL::HAL& hal; // When the display powers up, it is configured as follows: // // 1. Display clear // 2. Function set: // DL = 1; 8-bit interface data // N = 0; 1-line display // F = 0; 5x8 dot character font // 3. Display on/off control: // D = 0; Display off // C = 0; Cursor off // B = 0; Blinking off // 4. Entry mode set: // I/D = 1; Increment by 1 // S = 0; No shift // // Note, however, that resetting the Arduino doesn't reset the LCD, so we // can't assume that its in that state when a sketch starts (and the // LiquidCrystal constructor is called). LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) { init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7); } LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) { init(0, rs, 255, enable, d0, d1, d2, d3, d4, d5, d6, d7); } LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) { init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0); } LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) { init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); } void LiquidCrystal::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) { _rs_pin = rs; _rw_pin = rw; _enable_pin = enable; _data_pins[0] = d0; _data_pins[1] = d1; _data_pins[2] = d2; _data_pins[3] = d3; _data_pins[4] = d4; _data_pins[5] = d5; _data_pins[6] = d6; _data_pins[7] = d7; hal.gpio->pinMode(_rs_pin, HAL_GPIO_OUTPUT); // we can save 1 pin by not using RW. Indicate by passing 255 instead of pin# if (_rw_pin != 255) { hal.gpio->pinMode(_rw_pin, HAL_GPIO_OUTPUT); } hal.gpio->pinMode(_enable_pin, HAL_GPIO_OUTPUT); if (fourbitmode) _displayfunction = LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS; else _displayfunction = LCD_8BITMODE | LCD_1LINE | LCD_5x8DOTS; begin(16, 1); } void LiquidCrystal::begin(uint8_t cols, uint8_t lines, uint8_t dotsize) { if (lines > 1) { _displayfunction |= LCD_2LINE; } _numlines = lines; _currline = 0; // for some 1 line displays you can select a 10 pixel high font if ((dotsize != 0) && (lines == 1)) { _displayfunction |= LCD_5x10DOTS; } // SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION! // according to datasheet, we need at least 40ms after power rises above 2.7V // before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50 hal.scheduler->delay_microseconds(50000); // Now we pull both RS and R/W low to begin commands hal.gpio->write(_rs_pin, 0); hal.gpio->write(_enable_pin, 0); if (_rw_pin != 255) { hal.gpio->write(_rw_pin, 0); } //put the LCD into 4 bit or 8 bit mode if (! (_displayfunction & LCD_8BITMODE)) { // this is according to the hitachi HD44780 datasheet // figure 24, pg 46 // we start in 8bit mode, try to set 4 bit mode write4bits(0x03); hal.scheduler->delay_microseconds(4500); // wait min 4.1ms // second try write4bits(0x03); hal.scheduler->delay_microseconds(4500); // wait min 4.1ms // third go! write4bits(0x03); hal.scheduler->delay_microseconds(150); // finally, set to 4-bit interface write4bits(0x02); } else { // this is according to the hitachi HD44780 datasheet // page 45 figure 23 // Send function set command sequence command(LCD_FUNCTIONSET | _displayfunction); hal.scheduler->delay_microseconds(4500); // wait more than 4.1ms // second try command(LCD_FUNCTIONSET | _displayfunction); hal.scheduler->delay_microseconds(150); // third go command(LCD_FUNCTIONSET | _displayfunction); } // finally, set # lines, font size, etc. command(LCD_FUNCTIONSET | _displayfunction); // turn the display on with no cursor or blinking default _displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF; display(); // clear it off clear(); // Initialize to default text direction (for romance languages) _displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT; // set the entry mode command(LCD_ENTRYMODESET | _displaymode); } /********** high level commands, for the user! */ void LiquidCrystal::clear() { command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero hal.scheduler->delay_microseconds(2000); // this command takes a long time! } void LiquidCrystal::home() { command(LCD_RETURNHOME); // set cursor position to zero hal.scheduler->delay_microseconds(2000); // this command takes a long time! } void LiquidCrystal::setCursor(uint8_t col, uint8_t row) { int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 }; if ( row >= _numlines ) { row = _numlines-1; // we count rows starting w/0 } command(LCD_SETDDRAMADDR | (col + row_offsets[row])); } // Turn the display on/off (quickly) void LiquidCrystal::noDisplay() { _displaycontrol &= ~LCD_DISPLAYON; command(LCD_DISPLAYCONTROL | _displaycontrol); } void LiquidCrystal::display() { _displaycontrol |= LCD_DISPLAYON; command(LCD_DISPLAYCONTROL | _displaycontrol); } // Turns the underline cursor on/off void LiquidCrystal::noCursor() { _displaycontrol &= ~LCD_CURSORON; command(LCD_DISPLAYCONTROL | _displaycontrol); } void LiquidCrystal::cursor() { _displaycontrol |= LCD_CURSORON; command(LCD_DISPLAYCONTROL | _displaycontrol); } // Turn on and off the blinking cursor void LiquidCrystal::noBlink() { _displaycontrol &= ~LCD_BLINKON; command(LCD_DISPLAYCONTROL | _displaycontrol); } void LiquidCrystal::blink() { _displaycontrol |= LCD_BLINKON; command(LCD_DISPLAYCONTROL | _displaycontrol); } // These commands scroll the display without changing the RAM void LiquidCrystal::scrollDisplayLeft(void) { command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVELEFT); } void LiquidCrystal::scrollDisplayRight(void) { command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVERIGHT); } // This is for text that flows Left to Right void LiquidCrystal::leftToRight(void) { _displaymode |= LCD_ENTRYLEFT; command(LCD_ENTRYMODESET | _displaymode); } // This is for text that flows Right to Left void LiquidCrystal::rightToLeft(void) { _displaymode &= ~LCD_ENTRYLEFT; command(LCD_ENTRYMODESET | _displaymode); } // This will 'right justify' text from the cursor void LiquidCrystal::autoscroll(void) { _displaymode |= LCD_ENTRYSHIFTINCREMENT; command(LCD_ENTRYMODESET | _displaymode); } // This will 'left justify' text from the cursor void LiquidCrystal::noAutoscroll(void) { _displaymode &= ~LCD_ENTRYSHIFTINCREMENT; command(LCD_ENTRYMODESET | _displaymode); } // Allows us to fill the first 8 CGRAM locations // with custom characters void LiquidCrystal::createChar(uint8_t location, uint8_t charmap[]) { location &= 0x7; // we only have 8 locations 0-7 command(LCD_SETCGRAMADDR | (location << 3)); for (int i=0; i<8; i++) { write(charmap[i]); } } /*********** mid level commands, for sending data/cmds */ inline void LiquidCrystal::command(uint8_t value) { send(value, 0); } inline size_t LiquidCrystal::write(uint8_t value) { send(value, 1); return 1; // assume sucess } /************ low level data pushing commands **********/ // write either command or data, with automatic 4/8-bit selection void LiquidCrystal::send(uint8_t value, uint8_t mode) { hal.gpio->write(_rs_pin, mode); // if there is a RW pin indicated, set it low to Write if (_rw_pin != 255) { hal.gpio->write(_rw_pin, 0); } if (_displayfunction & LCD_8BITMODE) { write8bits(value); } else { write4bits(value>>4); write4bits(value); } } void LiquidCrystal::pulseEnable(void) { hal.gpio->write(_enable_pin, 0); hal.scheduler->delay_microseconds(1); hal.gpio->write(_enable_pin, 1); hal.scheduler->delay_microseconds(1); // enable pulse must be >450ns hal.gpio->write(_enable_pin, 0); hal.scheduler->delay_microseconds(100); // commands need > 37us to settle } void LiquidCrystal::write4bits(uint8_t value) { for (int i = 0; i < 4; i++) { hal.gpio->pinMode(_data_pins[i], HAL_GPIO_OUTPUT); hal.gpio->write(_data_pins[i], (value >> i) & 0x01); } pulseEnable(); } void LiquidCrystal::write8bits(uint8_t value) { for (int i = 0; i < 8; i++) { hal.gpio->pinMode(_data_pins[i], HAL_GPIO_OUTPUT); hal.gpio->write(_data_pins[i], (value >> i) & 0x01); } pulseEnable(); }