/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ // ArduSub scheduling, originally copied from ArduCopter #include "Sub.h" #define SCHED_TASK(func, rate_hz, max_time_micros, priority) SCHED_TASK_CLASS(Sub, &sub, func, rate_hz, max_time_micros, priority) /* scheduler table - all regular tasks apart from the fast_loop() should be listed here. All entries in this table must be ordered by priority. This table is interleaved with the table in AP_Vehicle to determine the order in which tasks are run. Convenience methods SCHED_TASK and SCHED_TASK_CLASS are provided to build entries in this structure: SCHED_TASK arguments: - name of static function to call - rate (in Hertz) at which the function should be called - expected time (in MicroSeconds) that the function should take to run - priority (0 through 255, lower number meaning higher priority) SCHED_TASK_CLASS arguments: - class name of method to be called - instance on which to call the method - method to call on that instance - rate (in Hertz) at which the method should be called - expected time (in MicroSeconds) that the method should take to run - priority (0 through 255, lower number meaning higher priority) */ const AP_Scheduler::Task Sub::scheduler_tasks[] = { SCHED_TASK(fifty_hz_loop, 50, 75, 3), SCHED_TASK_CLASS(AP_GPS, &sub.gps, update, 50, 200, 6), #if AP_OPTICALFLOW_ENABLED SCHED_TASK_CLASS(OpticalFlow, &sub.optflow, update, 200, 160, 9), #endif SCHED_TASK(update_batt_compass, 10, 120, 12), SCHED_TASK(read_rangefinder, 20, 100, 15), SCHED_TASK(update_altitude, 10, 100, 18), SCHED_TASK(three_hz_loop, 3, 75, 21), SCHED_TASK(update_turn_counter, 10, 50, 24), SCHED_TASK_CLASS(AP_Baro, &sub.barometer, accumulate, 50, 90, 27), SCHED_TASK_CLASS(AP_Notify, &sub.notify, update, 50, 90, 30), SCHED_TASK(one_hz_loop, 1, 100, 33), SCHED_TASK_CLASS(GCS, (GCS*)&sub._gcs, update_receive, 400, 180, 36), SCHED_TASK_CLASS(GCS, (GCS*)&sub._gcs, update_send, 400, 550, 39), #if AC_FENCE == ENABLED SCHED_TASK_CLASS(AC_Fence, &sub.fence, update, 10, 100, 42), #endif #if HAL_MOUNT_ENABLED SCHED_TASK_CLASS(AP_Mount, &sub.camera_mount, update, 50, 75, 45), #endif #if CAMERA == ENABLED SCHED_TASK_CLASS(AP_Camera, &sub.camera, update, 50, 75, 48), #endif SCHED_TASK(ten_hz_logging_loop, 10, 350, 51), SCHED_TASK(twentyfive_hz_logging, 25, 110, 54), SCHED_TASK_CLASS(AP_Logger, &sub.logger, periodic_tasks, 400, 300, 57), SCHED_TASK_CLASS(AP_InertialSensor, &sub.ins, periodic, 400, 50, 60), SCHED_TASK_CLASS(AP_Scheduler, &sub.scheduler, update_logging, 0.1, 75, 63), #if RPM_ENABLED == ENABLED SCHED_TASK_CLASS(AP_RPM, &sub.rpm_sensor, update, 10, 200, 66), #endif SCHED_TASK_CLASS(Compass, &sub.compass, cal_update, 100, 100, 69), SCHED_TASK(terrain_update, 10, 100, 72), #if GRIPPER_ENABLED == ENABLED SCHED_TASK_CLASS(AP_Gripper, &sub.g2.gripper, update, 10, 75, 75), #endif #ifdef USERHOOK_FASTLOOP SCHED_TASK(userhook_FastLoop, 100, 75, 78), #endif #ifdef USERHOOK_50HZLOOP SCHED_TASK(userhook_50Hz, 50, 75, 81), #endif #ifdef USERHOOK_MEDIUMLOOP SCHED_TASK(userhook_MediumLoop, 10, 75, 84), #endif #ifdef USERHOOK_SLOWLOOP SCHED_TASK(userhook_SlowLoop, 3.3, 75, 87), #endif #ifdef USERHOOK_SUPERSLOWLOOP SCHED_TASK(userhook_SuperSlowLoop, 1, 75, 90), #endif }; void Sub::get_scheduler_tasks(const AP_Scheduler::Task *&tasks, uint8_t &task_count, uint32_t &log_bit) { tasks = &scheduler_tasks[0]; task_count = ARRAY_SIZE(scheduler_tasks); log_bit = MASK_LOG_PM; } constexpr int8_t Sub::_failsafe_priorities[5]; // Main loop - 400hz void Sub::fast_loop() { // update INS immediately to get current gyro data populated ins.update(); //don't run rate controller in manual or motordetection modes if (control_mode != MANUAL && control_mode != MOTOR_DETECT) { // run low level rate controllers that only require IMU data attitude_control.rate_controller_run(); } // send outputs to the motors library motors_output(); // run EKF state estimator (expensive) // -------------------- read_AHRS(); // Inertial Nav // -------------------- read_inertia(); // check if ekf has reset target heading check_ekf_yaw_reset(); // run the attitude controllers update_flight_mode(); // update home from EKF if necessary update_home_from_EKF(); // check if we've reached the surface or bottom update_surface_and_bottom_detector(); #if HAL_MOUNT_ENABLED // camera mount's fast update camera_mount.update_fast(); #endif // log sensor health if (should_log(MASK_LOG_ANY)) { Log_Sensor_Health(); } AP_Vehicle::fast_loop(); } // 50 Hz tasks void Sub::fifty_hz_loop() { // check pilot input failsafe failsafe_pilot_input_check(); failsafe_crash_check(); failsafe_ekf_check(); failsafe_sensors_check(); // Update rc input/output rc().read_input(); SRV_Channels::output_ch_all(); } // update_batt_compass - read battery and compass // should be called at 10hz void Sub::update_batt_compass() { // read battery before compass because it may be used for motor interference compensation battery.read(); if (AP::compass().available()) { // update compass with throttle value - used for compassmot compass.set_throttle(motors.get_throttle()); compass.read(); } } // ten_hz_logging_loop // should be run at 10hz void Sub::ten_hz_logging_loop() { // log attitude data if we're not already logging at the higher rate if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST)) { Log_Write_Attitude(); ahrs_view.Write_Rate(motors, attitude_control, pos_control); if (should_log(MASK_LOG_PID)) { logger.Write_PID(LOG_PIDR_MSG, attitude_control.get_rate_roll_pid().get_pid_info()); logger.Write_PID(LOG_PIDP_MSG, attitude_control.get_rate_pitch_pid().get_pid_info()); logger.Write_PID(LOG_PIDY_MSG, attitude_control.get_rate_yaw_pid().get_pid_info()); logger.Write_PID(LOG_PIDA_MSG, pos_control.get_accel_z_pid().get_pid_info()); } } if (should_log(MASK_LOG_MOTBATT)) { motors.Log_Write(); } if (should_log(MASK_LOG_RCIN)) { logger.Write_RCIN(); } if (should_log(MASK_LOG_RCOUT)) { logger.Write_RCOUT(); } if (should_log(MASK_LOG_NTUN) && (mode_requires_GPS(control_mode) || !mode_has_manual_throttle(control_mode))) { pos_control.write_log(); } if (should_log(MASK_LOG_IMU) || should_log(MASK_LOG_IMU_FAST) || should_log(MASK_LOG_IMU_RAW)) { AP::ins().Write_Vibration(); } if (should_log(MASK_LOG_CTUN)) { attitude_control.control_monitor_log(); } } // twentyfive_hz_logging_loop // should be run at 25hz void Sub::twentyfive_hz_logging() { if (should_log(MASK_LOG_ATTITUDE_FAST)) { Log_Write_Attitude(); ahrs_view.Write_Rate(motors, attitude_control, pos_control); if (should_log(MASK_LOG_PID)) { logger.Write_PID(LOG_PIDR_MSG, attitude_control.get_rate_roll_pid().get_pid_info()); logger.Write_PID(LOG_PIDP_MSG, attitude_control.get_rate_pitch_pid().get_pid_info()); logger.Write_PID(LOG_PIDY_MSG, attitude_control.get_rate_yaw_pid().get_pid_info()); logger.Write_PID(LOG_PIDA_MSG, pos_control.get_accel_z_pid().get_pid_info()); } } // log IMU data if we're not already logging at the higher rate if (should_log(MASK_LOG_IMU) && !should_log(MASK_LOG_IMU_RAW)) { AP::ins().Write_IMU(); } } // three_hz_loop - 3.3hz loop void Sub::three_hz_loop() { leak_detector.update(); failsafe_leak_check(); failsafe_internal_pressure_check(); failsafe_internal_temperature_check(); // check if we've lost contact with the ground station failsafe_gcs_check(); // check if we've lost terrain data failsafe_terrain_check(); #if AC_FENCE == ENABLED // check if we have breached a fence fence_check(); #endif // AC_FENCE_ENABLED ServoRelayEvents.update_events(); } // one_hz_loop - runs at 1Hz void Sub::one_hz_loop() { bool arm_check = arming.pre_arm_checks(false); ap.pre_arm_check = arm_check; AP_Notify::flags.pre_arm_check = arm_check; AP_Notify::flags.pre_arm_gps_check = position_ok(); AP_Notify::flags.flying = motors.armed(); if (should_log(MASK_LOG_ANY)) { Log_Write_Data(LogDataID::AP_STATE, ap.value); } if (!motors.armed()) { // make it possible to change ahrs orientation at runtime during initial config ahrs.update_orientation(); motors.update_throttle_range(); } // update assigned functions and enable auxiliary servos SRV_Channels::enable_aux_servos(); // update position controller alt limits update_poscon_alt_max(); // log terrain data terrain_logging(); // need to set "likely flying" when armed to allow for compass // learning to run set_likely_flying(hal.util->get_soft_armed()); } void Sub::read_AHRS() { // Perform IMU calculations and get attitude info //----------------------------------------------- // <true> tells AHRS to skip INS update as we have already done it in fast_loop() ahrs.update(true); ahrs_view.update(); } // read baro and rangefinder altitude at 10hz void Sub::update_altitude() { // read in baro altitude read_barometer(); if (should_log(MASK_LOG_CTUN)) { Log_Write_Control_Tuning(); AP::ins().write_notch_log_messages(); #if HAL_GYROFFT_ENABLED gyro_fft.write_log_messages(); #endif } } bool Sub::control_check_barometer() { #if CONFIG_HAL_BOARD != HAL_BOARD_SITL if (!ap.depth_sensor_present) { // can't hold depth without a depth sensor gcs().send_text(MAV_SEVERITY_WARNING, "Depth sensor is not connected."); return false; } else if (failsafe.sensor_health) { gcs().send_text(MAV_SEVERITY_WARNING, "Depth sensor error."); return false; } #endif return true; } // vehicle specific waypoint info helpers bool Sub::get_wp_distance_m(float &distance) const { // see GCS_MAVLINK_Sub::send_nav_controller_output() distance = sub.wp_nav.get_wp_distance_to_destination() * 0.01; return true; } // vehicle specific waypoint info helpers bool Sub::get_wp_bearing_deg(float &bearing) const { // see GCS_MAVLINK_Sub::send_nav_controller_output() bearing = sub.wp_nav.get_wp_bearing_to_destination() * 0.01; return true; } // vehicle specific waypoint info helpers bool Sub::get_wp_crosstrack_error_m(float &xtrack_error) const { // no crosstrack error reported, see GCS_MAVLINK_Sub::send_nav_controller_output() xtrack_error = 0; return true; } AP_HAL_MAIN_CALLBACKS(&sub);