/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once /* This is the main Sub class */ //////////////////////////////////////////////////////////////////////////////// // Header includes //////////////////////////////////////////////////////////////////////////////// #include #include #include #include // Common dependencies #include #include #include #include #include // Application dependencies #include #include // Serial manager library #include // ArduPilot GPS library #include // ArduPilot Mega Flash Memory Library #include // ArduPilot Mega Analog to Digital Converter Library #include #include // ArduPilot Mega Magnetometer Library #include // ArduPilot Mega Vector/Matrix math Library #include // interface and maths for accelerometer calibration #include // ArduPilot Mega Inertial Sensor (accel & gyro) Library #include #include #include #include // Mission command library #include // Rally point library #include // PID library #include // PID library (2-axis) #include // P library #include // Attitude control library #include // Position control library #include // RC Channel Library #include // AP Motors library #include // Range finder library #include // Optical Flow library #include // Filter library #include // APM FIFO Buffer #include // APM relay #include #include // Photo or video camera #include // Camera/Antenna mount #include // needed for AHRS build #include // needed for AHRS build #include // ArduPilot Mega inertial navigation library #include // Waypoint navigation library #include // circle navigation library #include // ArduPilot Mega Declination Helper Library #include // Fence library #include // main loop scheduler #include // Notify library #include // Battery monitor library #include // board configuration library #include #include // Pilot input handling library #include // Joystick/gamepad button function assignment #include // Leak detector #include #include "AP_Arming_Sub.h" #include "defines.h" #include "config.h" #include "GCS_Mavlink.h" // libraries which are dependent on #defines in defines.h and/or config.h #if RCMAP_ENABLED == ENABLED #include // RC input mapping library #endif #if RPM_ENABLED == ENABLED #include #endif #if GRIPPER_ENABLED == ENABLED #include // gripper stuff #endif #if PROXIMITY_ENABLED == ENABLED #include #endif #if AVOIDANCE_ENABLED == ENABLED #include // Stop at fence library #endif // Local modules #include "Parameters.h" #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #endif class Sub : public AP_HAL::HAL::Callbacks { public: friend class GCS_MAVLINK_Sub; friend class Parameters; friend class ParametersG2; friend class AP_Arming_Sub; Sub(void); // HAL::Callbacks implementation. void setup() override; void loop() override; private: // key aircraft parameters passed to multiple libraries AP_Vehicle::MultiCopter aparm; // cliSerial isn't strictly necessary - it is an alias for hal.console. It may // be deprecated in favor of hal.console in later releases. AP_HAL::BetterStream* cliSerial; // Global parameters are all contained within the 'g' class. Parameters g; ParametersG2 g2; // main loop scheduler AP_Scheduler scheduler; // AP_Notify instance AP_Notify notify; // used to detect MAVLink acks from GCS to stop compassmot uint8_t command_ack_counter; // has a log download started? bool in_log_download; // primary input control channels RC_Channel *channel_roll; RC_Channel *channel_pitch; RC_Channel *channel_throttle; RC_Channel *channel_yaw; RC_Channel *channel_forward; RC_Channel *channel_lateral; // Dataflash DataFlash_Class DataFlash; AP_GPS gps; AP_LeakDetector leak_detector; // flight modes convenience array AP_Int8 *flight_modes; TSYS01 celsius; AP_Baro barometer; Compass compass; AP_InertialSensor ins; RangeFinder rangefinder {serial_manager, ROTATION_PITCH_270}; struct { bool enabled:1; bool alt_healthy:1; // true if we can trust the altitude from the rangefinder int16_t alt_cm; // tilt compensated altitude (in cm) from rangefinder uint32_t last_healthy_ms; LowPassFilterFloat alt_cm_filt; // altitude filter } rangefinder_state = { false, false, 0, 0 }; #if RPM_ENABLED == ENABLED AP_RPM rpm_sensor; #endif // Inertial Navigation EKF NavEKF2 EKF2 {&ahrs, barometer, rangefinder}; NavEKF3 EKF3 {&ahrs, barometer, rangefinder}; AP_AHRS_NavEKF ahrs {ins, barometer, gps, rangefinder, EKF2, EKF3, AP_AHRS_NavEKF::FLAG_ALWAYS_USE_EKF}; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL SITL::SITL sitl; #endif // Mission library AP_Mission mission; // Optical flow sensor #if OPTFLOW == ENABLED OpticalFlow optflow {ahrs}; #endif // gnd speed limit required to observe optical flow sensor limits float ekfGndSpdLimit; // scale factor applied to velocity controller gain to prevent optical flow noise causing excessive angle demand noise float ekfNavVelGainScaler; // system time in milliseconds of last recorded yaw reset from ekf uint32_t ekfYawReset_ms = 0; // GCS selection AP_SerialManager serial_manager; static const uint8_t num_gcs = MAVLINK_COMM_NUM_BUFFERS; GCS_MAVLINK_Sub gcs_chan[MAVLINK_COMM_NUM_BUFFERS]; GCS _gcs; // avoid using this; use gcs() GCS &gcs() { return _gcs; } // User variables #ifdef USERHOOK_VARIABLES # include USERHOOK_VARIABLES #endif // Documentation of Globals: union { struct { uint8_t simple_mode : 2; // This is the state of simple mode : 0 = disabled ; 1 = SIMPLE ; 2 = SUPERSIMPLE uint8_t pre_arm_check : 1; // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed uint8_t auto_armed : 1; // stops auto missions from beginning until throttle is raised uint8_t logging_started : 1; // true if dataflash logging has started uint8_t usb_connected : 1; // true if APM is powered from USB connection uint8_t compass_mot : 1; // true if we are currently performing compassmot calibration uint8_t motor_test : 1; // true if we are currently performing the motors test uint8_t initialised : 1; // true once the init_ardupilot function has completed. Extended status to GCS is not sent until this completes uint8_t throttle_zero : 1; // true if the throttle stick is at zero uint8_t system_time_set : 1; // true if the system time has been set from the GPS uint8_t gps_base_pos_set : 1; // true when the gps base position has been set (used for RTK gps only) enum HomeState home_state : 2; // home status (unset, set, locked) uint8_t using_interlock : 1; // aux switch motor interlock function is in use uint8_t motor_emergency_stop: 1; // motor estop switch, shuts off motors when enabled uint8_t at_bottom : 1; // true if we are at the bottom uint8_t at_surface : 1; // true if we are at the surface uint8_t depth_sensor_present: 1; // true if we have an external baro connected }; uint32_t value; } ap; // This is the state of the flight control system // There are multiple states defined such as STABILIZE, ACRO, control_mode_t control_mode; mode_reason_t control_mode_reason = MODE_REASON_UNKNOWN; control_mode_t prev_control_mode; mode_reason_t prev_control_mode_reason = MODE_REASON_UNKNOWN; #if RCMAP_ENABLED == ENABLED RCMapper rcmap; #endif // board specific config AP_BoardConfig BoardConfig; // Failsafe struct { uint8_t rc_override_active : 1; // 0 // true if rc control are overwritten by ground station uint8_t manual_control : 1; // 1 // A status flag for the radio failsafe uint8_t battery : 1; // 2 // A status flag for the battery failsafe uint8_t gcs : 1; // 4 // A status flag for the ground station failsafe uint8_t ekf : 1; // 5 // true if ekf failsafe has occurred uint8_t terrain : 1; // 6 // true if the missing terrain data failsafe has occurred uint8_t leak : 1; // true if leak recently detected uint8_t internal_pressure : 1; // true if internal pressure is over threshold uint8_t internal_temperature : 1; // true if temperature is over threshold uint32_t last_leak_warn_ms; // last time a leak warning was sent to gcs uint32_t last_gcs_warn_ms; uint32_t last_heartbeat_ms; // the time when the last HEARTBEAT message arrived from a GCS - used for triggering gcs failsafe uint32_t last_manual_control_ms; // last time MANUAL_CONTROL message arrived from GCS uint32_t terrain_first_failure_ms; // the first time terrain data access failed - used to calculate the duration of the failure uint32_t terrain_last_failure_ms; // the most recent time terrain data access failed } failsafe; // sensor health for logging struct { uint8_t baro : 1; // true if baro is healthy uint8_t compass : 1; // true if compass is healthy } sensor_health; AP_Motors6DOF motors; // GPS variables // Sometimes we need to remove the scaling for distance calcs float scaleLongDown; // Location & Navigation int32_t wp_bearing; // The location of home in relation to the Sub in centi-degrees int32_t home_bearing; // distance between plane and home in cm int32_t home_distance; // distance between plane and next waypoint in cm. uint32_t wp_distance; // Auto AutoMode auto_mode; // controls which auto controller is run // Guided GuidedMode guided_mode; // controls which controller is run (pos or vel) // Circle bool circle_pilot_yaw_override; // true if pilot is overriding yaw // SIMPLE Mode // Used to track the orientation of the Sub for Simple mode. This value is reset at each arming // or in SuperSimple mode when the Sub leaves a 20m radius from home. float simple_cos_yaw; float simple_sin_yaw; int32_t super_simple_last_bearing; float super_simple_cos_yaw; float super_simple_sin_yaw; // Stores initial bearing when armed - initial simple bearing is modified in super simple mode so not suitable int32_t initial_armed_bearing; // Throttle variables int16_t desired_climb_rate; // pilot desired climb rate - for logging purposes only // Loiter control uint16_t loiter_time_max; // How long we should stay in Loiter Mode for mission scripting (time in seconds) uint32_t loiter_time; // How long have we been loitering - The start time in millis // Delay the next navigation command int32_t nav_delay_time_max; // used for delaying the navigation commands uint32_t nav_delay_time_start; // Battery Sensors AP_BattMonitor battery; AP_Arming_Sub arming {ahrs, barometer, compass, battery}; // Altitude // The cm/s we are moving up or down based on filtered data - Positive = UP int16_t climb_rate; float target_rangefinder_alt; // desired altitude in cm above the ground int32_t baro_alt; // barometer altitude in cm above home float baro_climbrate; // barometer climbrate in cm/s // Turn counter int32_t quarter_turn_count; uint8_t last_turn_state; // 3D Location vectors // Current location of the Sub (altitude is relative to home) Location_Class current_loc; // Navigation Yaw control // auto flight mode's yaw mode uint8_t auto_yaw_mode; // Yaw will point at this location if auto_yaw_mode is set to AUTO_YAW_ROI Vector3f roi_WP; // bearing from current location to the yaw_look_at_WP float yaw_look_at_WP_bearing; float yaw_xtrack_correct_heading; // yaw used for YAW_LOOK_AT_HEADING yaw_mode int32_t yaw_look_at_heading; // Deg/s we should turn int16_t yaw_look_at_heading_slew; // heading when in yaw_look_ahead_bearing float yaw_look_ahead_bearing; // Delay Mission Scripting Command int32_t condition_value; // used in condition commands (eg delay, change alt, etc.) uint32_t condition_start; // IMU variables // Integration time (in seconds) for the gyros (DCM algorithm) // Updated with the fast loop float G_Dt; // Inertial Navigation AP_InertialNav_NavEKF inertial_nav; AP_AHRS_View ahrs_view; // Attitude, Position and Waypoint navigation objects // To-Do: move inertial nav up or other navigation variables down here AC_AttitudeControl_Sub attitude_control; AC_PosControl_Sub pos_control; #if AVOIDANCE_ENABLED == ENABLED AC_Avoid avoid; #endif AC_WPNav wp_nav; AC_Circle circle_nav; // Performance monitoring int16_t pmTest1; // System Timers // -------------- // Time in microseconds of main control loop uint32_t fast_loopTimer; // Counter of main loop executions. Used for performance monitoring and failsafe processing uint16_t mainLoop_count; // Used to exit the roll and pitch auto trim function uint8_t auto_trim_counter; // Reference to the relay object AP_Relay relay; // handle repeated servo and relay events AP_ServoRelayEvents ServoRelayEvents; // Reference to the camera object (it uses the relay object inside it) #if CAMERA == ENABLED AP_Camera camera; #endif // Camera/Antenna mount tracking and stabilisation stuff #if MOUNT == ENABLED // current_loc uses the baro/gps soloution for altitude rather than gps only. AP_Mount camera_mount; #endif // AC_Fence library to reduce fly-aways #if AC_FENCE == ENABLED AC_Fence fence; #endif // Rally library #if AC_RALLY == ENABLED AP_Rally rally; #endif // terrain handling #if AP_TERRAIN_AVAILABLE && AC_TERRAIN AP_Terrain terrain; #endif // use this to prevent recursion during sensor init bool in_mavlink_delay; // true if we are out of time in our event timeslice bool gcs_out_of_time; // Top-level logic // setup the var_info table AP_Param param_loader; uint32_t last_pilot_heading; uint32_t last_pilot_yaw_input_ms; uint32_t fs_terrain_recover_start_ms = 0; static const AP_Scheduler::Task scheduler_tasks[]; static const AP_Param::Info var_info[]; static const struct LogStructure log_structure[]; void compass_accumulate(void); void compass_cal_update(void); void barometer_accumulate(void); void perf_update(void); void fast_loop(); void rc_loop(); void fifty_hz_loop(); void update_mount(); void update_trigger(); void update_batt_compass(void); void ten_hz_logging_loop(); void twentyfive_hz_logging(); void three_hz_loop(); void one_hz_loop(); void update_GPS(void); void update_turn_counter(); void init_simple_bearing(); void update_simple_mode(void); void update_super_simple_bearing(bool force_update); void read_AHRS(void); void update_altitude(); void set_home_state(enum HomeState new_home_state); bool home_is_set(); void set_auto_armed(bool b); void set_simple_mode(uint8_t b); void set_failsafe_battery(bool b); void set_pre_arm_check(bool b); void set_motor_emergency_stop(bool b); float get_smoothing_gain(); void get_pilot_desired_lean_angles(float roll_in, float pitch_in, float &roll_out, float &pitch_out, float angle_max); float get_pilot_desired_yaw_rate(int16_t stick_angle); void check_ekf_yaw_reset(); float get_roi_yaw(); float get_look_ahead_yaw(); float get_pilot_desired_climb_rate(float throttle_control); float get_surface_tracking_climb_rate(int16_t target_rate, float current_alt_target, float dt); void update_poscon_alt_max(); void rotate_body_frame_to_NE(float &x, float &y); void gcs_send_heartbeat(void); void gcs_send_deferred(void); void send_heartbeat(mavlink_channel_t chan); void send_attitude(mavlink_channel_t chan); void send_limits_status(mavlink_channel_t chan); void send_extended_status1(mavlink_channel_t chan); void send_location(mavlink_channel_t chan); void send_nav_controller_output(mavlink_channel_t chan); void send_simstate(mavlink_channel_t chan); void send_hwstatus(mavlink_channel_t chan); void send_servo_out(mavlink_channel_t chan); void send_radio_out(mavlink_channel_t chan); void send_vfr_hud(mavlink_channel_t chan); void send_current_waypoint(mavlink_channel_t chan); void send_rangefinder(mavlink_channel_t chan); #if RPM_ENABLED == ENABLED void send_rpm(mavlink_channel_t chan); void rpm_update(); #endif void send_temperature(mavlink_channel_t chan); void send_pid_tuning(mavlink_channel_t chan); void gcs_send_message(enum ap_message id); void gcs_send_mission_item_reached_message(uint16_t mission_index); void gcs_data_stream_send(void); void gcs_check_input(void); void gcs_send_text(MAV_SEVERITY severity, const char *str); void do_erase_logs(void); void Log_Write_Current(); void Log_Write_Optflow(); void Log_Write_Nav_Tuning(); void Log_Write_Control_Tuning(); void Log_Write_Performance(); void Log_Write_Attitude(); void Log_Write_MotBatt(); void Log_Write_Event(uint8_t id); void Log_Write_Data(uint8_t id, int32_t value); void Log_Write_Data(uint8_t id, uint32_t value); void Log_Write_Data(uint8_t id, int16_t value); void Log_Write_Data(uint8_t id, uint16_t value); void Log_Write_Data(uint8_t id, float value); void Log_Write_Error(uint8_t sub_system, uint8_t error_code); void Log_Write_Baro(void); void Log_Write_Parameter_Tuning(uint8_t param, float tuning_val, int16_t control_in, int16_t tune_low, int16_t tune_high); void Log_Write_Home_And_Origin(); void Log_Sensor_Health(); void Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target); void Log_Write_Vehicle_Startup_Messages(); void Log_Read(uint16_t log_num, uint16_t start_page, uint16_t end_page); void start_logging() ; void load_parameters(void); void convert_pid_parameters(void); void userhook_init(); void userhook_FastLoop(); void userhook_50Hz(); void userhook_MediumLoop(); void userhook_SlowLoop(); void userhook_SuperSlowLoop(); void update_home_from_EKF(); void set_home_to_current_location_inflight(); bool set_home_to_current_location(); bool set_home_to_current_location_and_lock(); bool set_home_and_lock(const Location& loc); bool set_home(const Location& loc); bool far_from_EKF_origin(const Location& loc); void set_system_time_from_GPS(); void exit_mission(); bool verify_loiter_unlimited(); bool verify_loiter_time(); bool verify_wait_delay(); bool verify_within_distance(); bool verify_yaw(); void do_take_picture(); void log_picture(); bool acro_init(bool ignore_checks); void acro_run(); void get_pilot_desired_angle_rates(int16_t roll_in, int16_t pitch_in, int16_t yaw_in, float &roll_out, float &pitch_out, float &yaw_out); bool althold_init(bool ignore_checks); void althold_run(); bool auto_init(bool ignore_checks); void auto_run(); void auto_wp_start(const Vector3f& destination); void auto_wp_start(const Location_Class& dest_loc); void auto_wp_run(); void auto_spline_run(); void auto_circle_movetoedge_start(const Location_Class &circle_center, float radius_m); void auto_circle_start(); void auto_circle_run(); void auto_nav_guided_start(); void auto_nav_guided_run(); bool auto_loiter_start(); void auto_loiter_run(); uint8_t get_default_auto_yaw_mode(bool rtl); void set_auto_yaw_mode(uint8_t yaw_mode); void set_auto_yaw_look_at_heading(float angle_deg, float turn_rate_dps, int8_t direction, uint8_t relative_angle); void set_auto_yaw_roi(const Location &roi_location); float get_auto_heading(void); bool circle_init(bool ignore_checks); void circle_run(); bool guided_init(bool ignore_checks); void guided_pos_control_start(); void guided_vel_control_start(); void guided_posvel_control_start(); void guided_angle_control_start(); bool guided_set_destination(const Vector3f& destination); bool guided_set_destination(const Location_Class& dest_loc); void guided_set_velocity(const Vector3f& velocity); void guided_set_destination_posvel(const Vector3f& destination, const Vector3f& velocity); void guided_set_angle(const Quaternion &q, float climb_rate_cms); void guided_run(); void guided_pos_control_run(); void guided_vel_control_run(); void guided_posvel_control_run(); void guided_angle_control_run(); void guided_limit_clear(); void guided_limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm); void guided_limit_init_time_and_pos(); bool guided_limit_check(); bool velhold_init(bool ignore_checks); void velhold_run(); bool poshold_init(bool ignore_checks); void poshold_run(); bool stabilize_init(bool ignore_checks); void stabilize_run(); bool manual_init(bool ignore_checks); void manual_run(); void crash_check(uint32_t dt_seconds); void ekf_check(); bool ekf_over_threshold(); void failsafe_ekf_event(); void failsafe_ekf_off_event(void); void esc_calibration_startup_check(); void esc_calibration_passthrough(); void esc_calibration_auto(); bool should_disarm_on_failsafe(); void failsafe_battery_event(void); void failsafe_gcs_check(); void failsafe_manual_control_check(void); void set_neutral_controls(void); void failsafe_terrain_check(); void failsafe_terrain_set_status(bool data_ok); void failsafe_terrain_on_event(); void update_events(); void failsafe_enable(); void failsafe_disable(); void fence_check(); void fence_send_mavlink_status(mavlink_channel_t chan); bool set_mode(control_mode_t mode, mode_reason_t reason); bool gcs_set_mode(uint8_t mode) { return set_mode((control_mode_t)mode, MODE_REASON_GCS_COMMAND); } void update_flight_mode(); void exit_mode(control_mode_t old_control_mode, control_mode_t new_control_mode); bool mode_requires_GPS(control_mode_t mode); bool mode_has_manual_throttle(control_mode_t mode); bool mode_allows_arming(control_mode_t mode, bool arming_from_gcs); void notify_flight_mode(control_mode_t mode); void check_dynamic_flight(void); void read_inertia(); void read_inertial_altitude(); void update_surface_and_bottom_detector(); void set_surfaced(bool at_surface); void set_bottomed(bool at_bottom); void update_notify(); void motor_test_output(); bool mavlink_motor_test_check(mavlink_channel_t chan, bool check_rc); uint8_t mavlink_motor_test_start(mavlink_channel_t chan, uint8_t motor_seq, uint8_t throttle_type, uint16_t throttle_value, float timeout_sec); void motor_test_stop(); void auto_disarm_check(); bool init_arm_motors(bool arming_from_gcs); void init_disarm_motors(); void motors_output(); void lost_vehicle_check(); void run_nav_updates(void); void calc_position(); void calc_distance_and_bearing(); void calc_wp_distance(); void calc_wp_bearing(); void calc_home_distance_and_bearing(); void run_autopilot(); void perf_info_reset(); void perf_ignore_this_loop(); void perf_info_check_loop_time(uint32_t time_in_micros); uint16_t perf_info_get_num_loops(); uint32_t perf_info_get_max_time(); uint32_t perf_info_get_min_time(); uint16_t perf_info_get_num_long_running(); uint32_t perf_info_get_num_dropped(); Vector3f pv_location_to_vector(const Location& loc); float pv_alt_above_origin(float alt_above_home_cm); float pv_alt_above_home(float alt_above_origin_cm); float pv_get_bearing_cd(const Vector3f &origin, const Vector3f &destination); float pv_get_horizontal_distance_cm(const Vector3f &origin, const Vector3f &destination); float pv_distance_to_home_cm(const Vector3f &destination); void default_dead_zones(); void init_rc_in(); void init_rc_out(); void enable_motor_output(); void init_joystick(); void transform_manual_control_to_rc_override(int16_t x, int16_t y, int16_t z, int16_t r, uint16_t buttons); void handle_jsbutton_press(uint8_t button,bool shift=false,bool held=false); JSButton* get_button(uint8_t index); void default_js_buttons(void); void set_throttle_zero_flag(int16_t throttle_control); void init_barometer(bool save); void read_barometer(void); void init_rangefinder(void); void read_rangefinder(void); bool rangefinder_alt_ok(void); void init_compass(); void init_optflow(); void update_optical_flow(void); void read_battery(void); void gripper_update(); void terrain_update(); void terrain_logging(); bool terrain_use(); void report_batt_monitor(); void report_frame(); void report_radio(); void report_ins(); void report_flight_modes(); void report_optflow(); void print_radio_values(); void print_switch(uint8_t p, uint8_t m, bool b); void print_accel_offsets_and_scaling(void); void print_gyro_offsets(void); void report_compass(); void print_blanks(int16_t num); void print_divider(void); void print_enabled(bool b); void report_version(); void save_trim(); void auto_trim(); void init_ardupilot(); void startup_INS_ground(); bool calibrate_gyros(); bool position_ok(); bool ekf_position_ok(); bool optflow_position_ok(); void update_auto_armed(); void check_usb_mux(void); bool should_log(uint32_t mask); void print_hit_enter(); #if CH6_TUNE_ENABLED == ENABLED void tuning(); #endif void gcs_send_text_fmt(MAV_SEVERITY severity, const char *fmt, ...); bool start_command(const AP_Mission::Mission_Command& cmd); bool verify_command(const AP_Mission::Mission_Command& cmd); bool verify_command_callback(const AP_Mission::Mission_Command& cmd); bool do_guided(const AP_Mission::Mission_Command& cmd); void do_nav_wp(const AP_Mission::Mission_Command& cmd); void do_surface(const AP_Mission::Mission_Command& cmd); void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd); void do_circle(const AP_Mission::Mission_Command& cmd); void do_loiter_time(const AP_Mission::Mission_Command& cmd); void do_spline_wp(const AP_Mission::Mission_Command& cmd); #if NAV_GUIDED == ENABLED void do_nav_guided_enable(const AP_Mission::Mission_Command& cmd); void do_guided_limits(const AP_Mission::Mission_Command& cmd); #endif void do_nav_delay(const AP_Mission::Mission_Command& cmd); void do_wait_delay(const AP_Mission::Mission_Command& cmd); void do_within_distance(const AP_Mission::Mission_Command& cmd); void do_yaw(const AP_Mission::Mission_Command& cmd); void do_change_speed(const AP_Mission::Mission_Command& cmd); void do_set_home(const AP_Mission::Mission_Command& cmd); void do_roi(const AP_Mission::Mission_Command& cmd); void do_mount_control(const AP_Mission::Mission_Command& cmd); #if CAMERA == ENABLED void do_digicam_configure(const AP_Mission::Mission_Command& cmd); void do_digicam_control(const AP_Mission::Mission_Command& cmd); #endif #if GRIPPER_ENABLED == ENABLED void do_gripper(const AP_Mission::Mission_Command& cmd); #endif bool verify_nav_wp(const AP_Mission::Mission_Command& cmd); bool verify_surface(const AP_Mission::Mission_Command& cmd); bool verify_circle(const AP_Mission::Mission_Command& cmd); bool verify_spline_wp(const AP_Mission::Mission_Command& cmd); #if NAV_GUIDED == ENABLED bool verify_nav_guided_enable(const AP_Mission::Mission_Command& cmd); #endif bool verify_nav_delay(const AP_Mission::Mission_Command& cmd); void auto_spline_start(const Location_Class& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Location_Class& next_destination); void print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode); void log_init(void); void run_cli(AP_HAL::UARTDriver *port); void init_capabilities(void); void dataflash_periodic(void); void accel_cal_update(void); void set_leak_status(bool status); void failsafe_internal_pressure_check(); void failsafe_internal_temperature_check(); void failsafe_terrain_act(void); bool auto_terrain_recover_start(void); void auto_terrain_recover_run(void); void translate_wpnav_rp(float &lateral_out, float &forward_out); void translate_circle_nav_rp(float &lateral_out, float &forward_out); void translate_pos_control_rp(float &lateral_out, float &forward_out); bool surface_init(bool ignore_flags); void surface_run(); void convert_old_parameters(void); public: void mavlink_delay_cb(); void failsafe_check(); int8_t dump_log(uint8_t argc, const Menu::arg *argv); int8_t erase_logs(uint8_t argc, const Menu::arg *argv); int8_t select_logs(uint8_t argc, const Menu::arg *argv); bool print_log_menu(void); int8_t process_logs(uint8_t argc, const Menu::arg *argv); int8_t main_menu_help(uint8_t, const Menu::arg*); int8_t setup_mode(uint8_t argc, const Menu::arg *argv); int8_t setup_factory(uint8_t argc, const Menu::arg *argv); int8_t setup_set(uint8_t argc, const Menu::arg *argv); int8_t setup_show(uint8_t argc, const Menu::arg *argv); int8_t esc_calib(uint8_t argc, const Menu::arg *argv); int8_t test_mode(uint8_t argc, const Menu::arg *argv); int8_t test_baro(uint8_t argc, const Menu::arg *argv); int8_t test_compass(uint8_t argc, const Menu::arg *argv); int8_t test_ins(uint8_t argc, const Menu::arg *argv); int8_t test_optflow(uint8_t argc, const Menu::arg *argv); int8_t test_relay(uint8_t argc, const Menu::arg *argv); int8_t test_shell(uint8_t argc, const Menu::arg *argv); int8_t test_rangefinder(uint8_t argc, const Menu::arg *argv); int8_t reboot_board(uint8_t argc, const Menu::arg *argv); }; #define MENU_FUNC(func) FUNCTOR_BIND(&sub, &Sub::func, int8_t, uint8_t, const Menu::arg *) extern const AP_HAL::HAL& hal; extern Sub sub; using AP_HAL::millis; using AP_HAL::micros;