/* AP_Compass_HIL.cpp - Arduino Library for HIL model of HMC5843 I2C Magnetometer Code by James Goppert. DIYDrones.com This library is free software; you can redistribute it and / or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. */ #include "AP_Compass_HIL.h" // Constructors //////////////////////////////////////////////////////////////// AP_Compass_HIL::AP_Compass_HIL() : orientation(0), declination(0.0) { // mag x y z offset initialisation offset[0] = 0; offset[1] = 0; offset[2] = 0; // initialise orientation matrix orientation_matrix = ROTATION_NONE; } // Public Methods ////////////////////////////////////////////////////////////// bool AP_Compass_HIL::init(int initialise_wire_lib) { unsigned long currentTime = millis(); // record current time int numAttempts = 0; int success = 0; // calibration initialisation calibration[0] = 1.0; calibration[1] = 1.0; calibration[2] = 1.0; while( success == 0 && numAttempts < 5 ) { // record number of attempts at initialisation numAttempts++; // read values from the compass read(); delay(10); // calibrate if( abs(mag_x) > 500 && abs(mag_x) < 1000 && abs(mag_y) > 500 && abs(mag_y) < 1000 && abs(mag_z) > 500 && abs(mag_z) < 1000) { calibration[0] = fabs(715.0 / mag_x); calibration[1] = fabs(715.0 / mag_y); calibration[2] = fabs(715.0 / mag_z); // mark success success = 1; } } return(success); } // Read Sensor data void AP_Compass_HIL::read() { // values set by setHIL function } void AP_Compass_HIL::calculate(float roll, float pitch) { float headX; float headY; float cos_roll; float sin_roll; float cos_pitch; float sin_pitch; Vector3f rotMagVec; cos_roll = cos(roll); // Optimizacion, se puede sacar esto de la matriz DCM? sin_roll = sin(roll); cos_pitch = cos(pitch); sin_pitch = sin(pitch); // rotate the magnetometer values depending upon orientation if( orientation == 0 ) rotMagVec = Vector3f(mag_x+offset[0],mag_y+offset[1],mag_z+offset[2]); else rotMagVec = orientation_matrix*Vector3f(mag_x+offset[0],mag_y+offset[1],mag_z+offset[2]); // Tilt compensated Magnetic field X component: headX = rotMagVec.x*cos_pitch+rotMagVec.y*sin_roll*sin_pitch+rotMagVec.z*cos_roll*sin_pitch; // Tilt compensated Magnetic field Y component: headY = rotMagVec.y*cos_roll-rotMagVec.z*sin_roll; // Magnetic heading heading = atan2(-headY,headX); // Declination correction (if supplied) if( declination != 0.0 ) { heading = heading + declination; if (heading > M_PI) // Angle normalization (-180 deg, 180 deg) heading -= (2.0 * M_PI); else if (heading < -M_PI) heading += (2.0 * M_PI); } // Optimization for external DCM use. Calculate normalized components heading_x = cos(heading); heading_y = sin(heading); } void AP_Compass_HIL::set_orientation(const Matrix3f &rotation_matrix) { orientation_matrix = rotation_matrix; if( orientation_matrix == ROTATION_NONE ) orientation = 0; else orientation = 1; } void AP_Compass_HIL::set_offsets(int x, int y, int z) { offset[0] = x; offset[1] = y; offset[2] = z; } void AP_Compass_HIL::set_declination(float radians) { declination = radians; } void AP_Compass_HIL::setHIL(float _mag_x, float _mag_y, float _mag_z) { // TODO: map floats to raw mag_x = _mag_x; mag_y = _mag_y; mag_z = _mag_z; }