#include "AC_AttitudeControl_Sub.h" #include #include // table of user settable parameters const AP_Param::GroupInfo AC_AttitudeControl_Sub::var_info[] = { // parameters from parent vehicle AP_NESTEDGROUPINFO(AC_AttitudeControl, 0), // @Param: RAT_RLL_P // @DisplayName: Roll axis rate controller P gain // @Description: Roll axis rate controller P gain. Corrects in proportion to the difference between the desired roll rate vs actual roll rate // @Range: 0.0 0.30 // @Increment: 0.005 // @User: Standard // @Param: RAT_RLL_I // @DisplayName: Roll axis rate controller I gain // @Description: Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate // @Range: 0.0 0.5 // @Increment: 0.01 // @User: Standard // @Param: RAT_RLL_IMAX // @DisplayName: Roll axis rate controller I gain maximum // @Description: Roll axis rate controller I gain maximum. Constrains the maximum that the I term will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_RLL_D // @DisplayName: Roll axis rate controller D gain // @Description: Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate // @Range: 0.0 0.02 // @Increment: 0.001 // @User: Standard // @Param: RAT_RLL_FF // @DisplayName: Roll axis rate controller feed forward // @Description: Roll axis rate controller feed forward // @Range: 0 0.5 // @Increment: 0.001 // @User: Standard // @Param: RAT_RLL_FLTT // @DisplayName: Roll axis rate controller input frequency in Hz // @Description: Roll axis rate controller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_RLL_FLTE // @DisplayName: Roll axis rate controller input frequency in Hz // @Description: Roll axis rate controller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_RLL_FLTD // @DisplayName: Roll axis rate controller input frequency in Hz // @Description: Roll axis rate controller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_RLL_SMAX // @DisplayName: Roll slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced // @Param: RAT_RLL_PDMX // @DisplayName: Roll axis rate controller PD sum maximum // @Description: Roll axis rate controller PD sum maximum. The maximum/minimum value that the sum of the P and D term can output // @Range: 0 1 // @Increment: 0.01 // @Param: RAT_RLL_D_FF // @DisplayName: Roll Derivative FeedForward Gain // @Description: FF D Gain which produces an output that is proportional to the rate of change of the target // @Range: 0 0.02 // @Increment: 0.0001 // @User: Advanced // @Param: RAT_RLL_NTF // @DisplayName: Roll Target notch filter index // @Description: Roll Target notch filter index // @Range: 1 8 // @User: Advanced // @Param: RAT_RLL_NEF // @DisplayName: Roll Error notch filter index // @Description: Roll Error notch filter index // @Range: 1 8 // @User: Advanced AP_SUBGROUPINFO(_pid_rate_roll, "RAT_RLL_", 1, AC_AttitudeControl_Sub, AC_PID), // @Param: RAT_PIT_P // @DisplayName: Pitch axis rate controller P gain // @Description: Pitch axis rate controller P gain. Corrects in proportion to the difference between the desired pitch rate vs actual pitch rate // @Range: 0.0 0.30 // @Increment: 0.005 // @User: Standard // @Param: RAT_PIT_I // @DisplayName: Pitch axis rate controller I gain // @Description: Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate // @Range: 0.0 0.5 // @Increment: 0.01 // @User: Standard // @Param: RAT_PIT_IMAX // @DisplayName: Pitch axis rate controller I gain maximum // @Description: Pitch axis rate controller I gain maximum. Constrains the maximum that the I term will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_PIT_D // @DisplayName: Pitch axis rate controller D gain // @Description: Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate // @Range: 0.0 0.02 // @Increment: 0.001 // @User: Standard // @Param: RAT_PIT_FF // @DisplayName: Pitch axis rate controller feed forward // @Description: Pitch axis rate controller feed forward // @Range: 0 0.5 // @Increment: 0.001 // @User: Standard // @Param: RAT_PIT_FLTT // @DisplayName: Pitch axis rate controller input frequency in Hz // @Description: Pitch axis rate controller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_PIT_FLTE // @DisplayName: Pitch axis rate controller input frequency in Hz // @Description: Pitch axis rate controller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_PIT_FLTD // @DisplayName: Pitch axis rate controller input frequency in Hz // @Description: Pitch axis rate controller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_PIT_SMAX // @DisplayName: Pitch slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced // @Param: RAT_PIT_PDMX // @DisplayName: Pitch axis rate controller PD sum maximum // @Description: Pitch axis rate controller PD sum maximum. The maximum/minimum value that the sum of the P and D term can output // @Range: 0 1 // @Increment: 0.01 // @Param: RAT_PIT_D_FF // @DisplayName: Pitch Derivative FeedForward Gain // @Description: FF D Gain which produces an output that is proportional to the rate of change of the target // @Range: 0 0.02 // @Increment: 0.0001 // @User: Advanced // @Param: RAT_PIT_NTF // @DisplayName: Pitch Target notch filter index // @Description: Pitch Target notch filter index // @Range: 1 8 // @User: Advanced // @Param: RAT_PIT_NEF // @DisplayName: Pitch Error notch filter index // @Description: Pitch Error notch filter index // @Range: 1 8 // @User: Advanced AP_SUBGROUPINFO(_pid_rate_pitch, "RAT_PIT_", 2, AC_AttitudeControl_Sub, AC_PID), // @Param: RAT_YAW_P // @DisplayName: Yaw axis rate controller P gain // @Description: Yaw axis rate controller P gain. Corrects in proportion to the difference between the desired yaw rate vs actual yaw rate // @Range: 0.0 0.50 // @Increment: 0.005 // @User: Standard // @Param: RAT_YAW_I // @DisplayName: Yaw axis rate controller I gain // @Description: Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate // @Range: 0.0 0.05 // @Increment: 0.01 // @User: Standard // @Param: RAT_YAW_IMAX // @DisplayName: Yaw axis rate controller I gain maximum // @Description: Yaw axis rate controller I gain maximum. Constrains the maximum that the I term will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_YAW_D // @DisplayName: Yaw axis rate controller D gain // @Description: Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate // @Range: 0.000 0.02 // @Increment: 0.001 // @User: Standard // @Param: RAT_YAW_FF // @DisplayName: Yaw axis rate controller feed forward // @Description: Yaw axis rate controller feed forward // @Range: 0 0.5 // @Increment: 0.001 // @User: Standard // @Param: RAT_YAW_FLTT // @DisplayName: Yaw axis rate controller input frequency in Hz // @Description: Yaw axis rate controller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_YAW_FLTE // @DisplayName: Yaw axis rate controller input frequency in Hz // @Description: Yaw axis rate controller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_YAW_FLTD // @DisplayName: Yaw axis rate controller input frequency in Hz // @Description: Yaw axis rate controller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_YAW_SMAX // @DisplayName: Yaw slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced // @Param: RAT_YAW_PDMX // @DisplayName: Yaw axis rate controller PD sum maximum // @Description: Yaw axis rate controller PD sum maximum. The maximum/minimum value that the sum of the P and D term can output // @Range: 0 1 // @Increment: 0.01 // @Param: RAT_YAW_D_FF // @DisplayName: Yaw Derivative FeedForward Gain // @Description: FF D Gain which produces an output that is proportional to the rate of change of the target // @Range: 0 0.02 // @Increment: 0.0001 // @User: Advanced // @Param: RAT_YAW_NTF // @DisplayName: Yaw Target notch filter index // @Description: Yaw Target notch filter index // @Range: 1 8 // @User: Advanced // @Param: RAT_YAW_NEF // @DisplayName: Yaw Error notch filter index // @Description: Yaw Error notch filter index // @Range: 1 8 // @User: Advanced AP_SUBGROUPINFO(_pid_rate_yaw, "RAT_YAW_", 3, AC_AttitudeControl_Sub, AC_PID), // @Param: THR_MIX_MIN // @DisplayName: Throttle Mix Minimum // @Description: Throttle vs attitude control prioritisation used when landing (higher values mean we prioritise attitude control over throttle) // @Range: 0.1 0.25 // @User: Advanced AP_GROUPINFO("THR_MIX_MIN", 4, AC_AttitudeControl_Sub, _thr_mix_min, AC_ATTITUDE_CONTROL_MIN_DEFAULT), // @Param: THR_MIX_MAX // @DisplayName: Throttle Mix Maximum // @Description: Throttle vs attitude control prioritisation used during active flight (higher values mean we prioritise attitude control over throttle) // @Range: 0.5 0.9 // @User: Advanced AP_GROUPINFO("THR_MIX_MAX", 5, AC_AttitudeControl_Sub, _thr_mix_max, AC_ATTITUDE_CONTROL_MAX_DEFAULT), // @Param: THR_MIX_MAN // @DisplayName: Throttle Mix Manual // @Description: Throttle vs attitude control prioritisation used during manual flight (higher values mean we prioritise attitude control over throttle) // @Range: 0.5 0.9 // @User: Advanced AP_GROUPINFO("THR_MIX_MAN", 6, AC_AttitudeControl_Sub, _thr_mix_man, AC_ATTITUDE_CONTROL_MAN_DEFAULT), // @Param: RAT_RLL_FILT // @DisplayName: Roll axis rate controller input frequency in Hz // @Description: Roll axis rate controller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_PIT_FILT // @DisplayName: Pitch axis rate controller input frequency in Hz // @Description: Pitch axis rate controller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_YAW_FILT // @DisplayName: Yaw axis rate controller input frequency in Hz // @Description: Yaw axis rate controller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz // @User: Standard AP_GROUPEND }; AC_AttitudeControl_Sub::AC_AttitudeControl_Sub(AP_AHRS_View &ahrs, const AP_MultiCopter &aparm, AP_MotorsMulticopter& motors) : AC_AttitudeControl(ahrs, aparm, motors), _motors_multi(motors), _pid_rate_roll(AC_ATC_SUB_RATE_RP_P, AC_ATC_SUB_RATE_RP_I, AC_ATC_SUB_RATE_RP_D, 0.0f, AC_ATC_SUB_RATE_RP_IMAX, AC_ATC_SUB_RATE_RP_FILT_HZ, 0.0f, AC_ATC_SUB_RATE_RP_FILT_HZ), _pid_rate_pitch(AC_ATC_SUB_RATE_RP_P, AC_ATC_SUB_RATE_RP_I, AC_ATC_SUB_RATE_RP_D, 0.0f, AC_ATC_SUB_RATE_RP_IMAX, AC_ATC_SUB_RATE_RP_FILT_HZ, 0.0f, AC_ATC_SUB_RATE_RP_FILT_HZ), _pid_rate_yaw(AC_ATC_SUB_RATE_YAW_P, AC_ATC_SUB_RATE_YAW_I, AC_ATC_SUB_RATE_YAW_D, 0.0f, AC_ATC_SUB_RATE_YAW_IMAX, AC_ATC_SUB_RATE_YAW_FILT_HZ, 0.0f, AC_ATC_SUB_RATE_YAW_FILT_HZ) { AP_Param::setup_object_defaults(this, var_info); // Sub-specific defaults for parent class _p_angle_roll.kP().set_default(AC_ATC_SUB_ANGLE_P); _p_angle_pitch.kP().set_default(AC_ATC_SUB_ANGLE_P); _p_angle_yaw.kP().set_default(AC_ATC_SUB_ANGLE_P); _accel_yaw_max.set_default(AC_ATC_SUB_ACCEL_Y_MAX); } // Update Alt_Hold angle maximum void AC_AttitudeControl_Sub::update_althold_lean_angle_max(float throttle_in) { // calc maximum tilt angle based on throttle float thr_max = _motors_multi.get_throttle_thrust_max(); // divide by zero check if (is_zero(thr_max)) { _althold_lean_angle_max = 0.0f; return; } float althold_lean_angle_max = acosf(constrain_float(throttle_in/(AC_ATTITUDE_CONTROL_ANGLE_LIMIT_THROTTLE_MAX * thr_max), 0.0f, 1.0f)); _althold_lean_angle_max = _althold_lean_angle_max + (_dt/(_dt+_angle_limit_tc))*(althold_lean_angle_max-_althold_lean_angle_max); } void AC_AttitudeControl_Sub::set_throttle_out(float throttle_in, bool apply_angle_boost, float filter_cutoff) { _throttle_in = throttle_in; update_althold_lean_angle_max(throttle_in); _motors.set_throttle_filter_cutoff(filter_cutoff); _motors.set_throttle(throttle_in); _motors.set_throttle_avg_max(get_throttle_avg_max(MAX(throttle_in, _throttle_in))); } // returns a throttle including compensation for roll/pitch angle // throttle value should be 0 ~ 1 float AC_AttitudeControl_Sub::get_throttle_boosted(float throttle_in) { if (!_angle_boost_enabled) { _angle_boost = 0; return throttle_in; } // inverted_factor is 1 for tilt angles below 60 degrees // inverted_factor reduces from 1 to 0 for tilt angles between 60 and 90 degrees float cos_tilt = _ahrs.cos_pitch() * _ahrs.cos_roll(); float inverted_factor = constrain_float(2.0f*cos_tilt, 0.0f, 1.0f); float boost_factor = 1.0f/constrain_float(cos_tilt, 0.5f, 1.0f); float throttle_out = throttle_in*inverted_factor*boost_factor; _angle_boost = constrain_float(throttle_out - throttle_in,-1.0f,1.0f); return throttle_out; } // returns a throttle including compensation for roll/pitch angle // throttle value should be 0 ~ 1 float AC_AttitudeControl_Sub::get_throttle_avg_max(float throttle_in) { throttle_in = constrain_float(throttle_in, 0.0f, 1.0f); return MAX(throttle_in, throttle_in*MAX(0.0f,1.0f-_throttle_rpy_mix)+_motors.get_throttle_hover()*_throttle_rpy_mix); } // update_throttle_rpy_mix - slew set_throttle_rpy_mix to requested value void AC_AttitudeControl_Sub::update_throttle_rpy_mix() { // slew _throttle_rpy_mix to _throttle_rpy_mix_desired if (_throttle_rpy_mix < _throttle_rpy_mix_desired) { // increase quickly (i.e. from 0.1 to 0.9 in 0.4 seconds) _throttle_rpy_mix += MIN(2.0f*_dt, _throttle_rpy_mix_desired-_throttle_rpy_mix); } else if (_throttle_rpy_mix > _throttle_rpy_mix_desired) { // reduce more slowly (from 0.9 to 0.1 in 1.6 seconds) _throttle_rpy_mix -= MIN(0.5f*_dt, _throttle_rpy_mix-_throttle_rpy_mix_desired); } _throttle_rpy_mix = constrain_float(_throttle_rpy_mix, 0.1f, AC_ATTITUDE_CONTROL_MAX); } void AC_AttitudeControl_Sub::rate_controller_run() { // move throttle vs attitude mixing towards desired (called from here because this is conveniently called on every iteration) update_throttle_rpy_mix(); Vector3f gyro_latest = _ahrs.get_gyro_latest(); _motors.set_roll(get_rate_roll_pid().update_all(_ang_vel_body.x, gyro_latest.x, _dt, _motors.limit.roll)); _motors.set_pitch(get_rate_pitch_pid().update_all(_ang_vel_body.y, gyro_latest.y, _dt, _motors.limit.pitch)); _motors.set_yaw(get_rate_yaw_pid().update_all(_ang_vel_body.z, gyro_latest.z, _dt, _motors.limit.yaw)); control_monitor_update(); } // sanity check parameters. should be called once before takeoff void AC_AttitudeControl_Sub::parameter_sanity_check() { // sanity check throttle mix parameters if (_thr_mix_man < 0.1f || _thr_mix_man > AC_ATTITUDE_CONTROL_MAN_LIMIT) { // parameter description recommends thr-mix-man be no higher than 0.9 but we allow up to 4.0 // which can be useful for very high powered copters with very low hover throttle _thr_mix_man.set_and_save(constrain_float(_thr_mix_man, 0.1, AC_ATTITUDE_CONTROL_MAN_LIMIT)); } if (_thr_mix_min < 0.1f || _thr_mix_min > AC_ATTITUDE_CONTROL_MIN_LIMIT) { _thr_mix_min.set_and_save(constrain_float(_thr_mix_min, 0.1, AC_ATTITUDE_CONTROL_MIN_LIMIT)); } if (_thr_mix_max < 0.5f || _thr_mix_max > AC_ATTITUDE_CONTROL_MAX) { // parameter description recommends thr-mix-max be no higher than 0.9 but we allow up to 5.0 // which can be useful for very high powered copters with very low hover throttle _thr_mix_max.set_and_save(constrain_float(_thr_mix_max, 0.5, AC_ATTITUDE_CONTROL_MAX)); } if (_thr_mix_min > _thr_mix_max) { _thr_mix_min.set_and_save(AC_ATTITUDE_CONTROL_MIN_DEFAULT); _thr_mix_max.set_and_save(AC_ATTITUDE_CONTROL_MAX_DEFAULT); } } // This function ensures that the ROV reaches the target orientation with the desired yaw rate void AC_AttitudeControl_Sub::input_euler_angle_roll_pitch_slew_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_angle_cd, float target_yaw_rate) { // Convert from centidegrees on public interface to radians const float euler_yaw_angle = wrap_PI(radians(euler_yaw_angle_cd * 0.01f)); const float current_yaw = AP::ahrs().get_yaw(); // Compute angle error const float yaw_error = wrap_PI(euler_yaw_angle - current_yaw); int direction = 0; if (yaw_error < 0){ direction = -1; } else { direction = 1; } target_yaw_rate *= direction; if (fabsf(yaw_error) > MAX_YAW_ERROR) { // rotate the rov with desired yaw rate towards the target yaw input_euler_angle_roll_pitch_euler_rate_yaw(euler_roll_angle_cd, euler_pitch_angle_cd, target_yaw_rate); } else { // holds the rov's angles input_euler_angle_roll_pitch_yaw(euler_roll_angle_cd, euler_pitch_angle_cd, euler_yaw_angle_cd, true); } } void AC_AttitudeControl_Sub::set_notch_sample_rate(float sample_rate) { #if AP_FILTER_ENABLED _pid_rate_roll.set_notch_sample_rate(sample_rate); _pid_rate_pitch.set_notch_sample_rate(sample_rate); _pid_rate_yaw.set_notch_sample_rate(sample_rate); #endif }