/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* control code for tailsitters. Enabled by setting Q_FRAME_CLASS=10 */ #include "Plane.h" /* return true when flying a tailsitter */ bool QuadPlane::is_tailsitter(void) const { return available() && frame_class == AP_Motors::MOTOR_FRAME_TAILSITTER; } /* check if we are flying as a tailsitter */ bool QuadPlane::tailsitter_active(void) { if (!is_tailsitter()) { return false; } if (in_vtol_mode()) { return true; } // check if we are in ANGLE_WAIT fixed wing transition if (transition_state == TRANSITION_ANGLE_WAIT_FW) { return true; } return false; } /* run output for tailsitters */ void QuadPlane::tailsitter_output(void) { if (!is_tailsitter()) { return; } if (!tailsitter_active() || in_tailsitter_vtol_transition()) { if (tailsitter.vectored_forward_gain > 0) { // thrust vectoring in fixed wing flight float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron); float elevator = SRV_Channels::get_output_scaled(SRV_Channel::k_elevator); float tilt_left = (elevator + aileron) * tailsitter.vectored_forward_gain; float tilt_right = (elevator - aileron) * tailsitter.vectored_forward_gain; SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, tilt_left); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, tilt_right); } else { SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, 0); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, 0); } if (in_tailsitter_vtol_transition() && !throttle_wait && is_flying() && hal.util->get_soft_armed()) { /* during transitions to vtol mode set the throttle to the hover throttle, and set the altitude controller integrator to the same throttle level */ uint8_t throttle = motors->get_throttle_hover() * 100; SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle); SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, 0); pos_control->get_accel_z_pid().set_integrator(throttle*10); } return; } motors_output(); plane.pitchController.reset_I(); plane.rollController.reset_I(); if (hal.util->get_soft_armed()) { // scale surfaces for throttle tailsitter_speed_scaling(); } if (tailsitter.vectored_hover_gain > 0) { // thrust vectoring VTOL modes float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron); float elevator = SRV_Channels::get_output_scaled(SRV_Channel::k_elevator); /* apply extra elevator when at high pitch errors, using a power law. This allows the motors to point straight up for takeoff without integrator windup */ int32_t pitch_error_cd = (plane.nav_pitch_cd - ahrs_view->pitch_sensor) * 0.5; float extra_pitch = constrain_float(pitch_error_cd, -4500, 4500) / 4500.0; float extra_sign = extra_pitch > 0?1:-1; float extra_elevator = extra_sign * powf(fabsf(extra_pitch), tailsitter.vectored_hover_power) * 4500; float tilt_left = extra_elevator + (elevator + aileron) * tailsitter.vectored_hover_gain; float tilt_right = extra_elevator + (elevator - aileron) * tailsitter.vectored_hover_gain; if (fabsf(tilt_left) >= 4500 || fabsf(tilt_right) >= 4500) { // prevent integrator windup motors->limit.roll_pitch = 1; motors->limit.yaw = 1; } SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, tilt_left); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, tilt_right); } if (tailsitter.input_mask_chan > 0 && tailsitter.input_mask > 0 && RC_Channels::get_radio_in(tailsitter.input_mask_chan-1) > 1700) { // the user is learning to prop-hang if (tailsitter.input_mask & TAILSITTER_MASK_AILERON) { SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, plane.channel_roll->get_control_in_zero_dz()); } if (tailsitter.input_mask & TAILSITTER_MASK_ELEVATOR) { SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, plane.channel_pitch->get_control_in_zero_dz()); } if (tailsitter.input_mask & TAILSITTER_MASK_THROTTLE) { SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, plane.channel_throttle->get_control_in_zero_dz()); } if (tailsitter.input_mask & TAILSITTER_MASK_RUDDER) { SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, plane.channel_rudder->get_control_in_zero_dz()); } } } /* return true when we have completed enough of a transition to switch to fixed wing control */ bool QuadPlane::tailsitter_transition_fw_complete(void) { if (plane.fly_inverted()) { // transition immediately return true; } int32_t roll_cd = labs(ahrs_view->roll_sensor); if (roll_cd > 9000) { roll_cd = 18000 - roll_cd; } if (labs(ahrs_view->pitch_sensor) > tailsitter.transition_angle*100 || roll_cd > tailsitter.transition_angle*100 || AP_HAL::millis() - transition_start_ms > uint32_t(transition_time_ms)) { return true; } // still waiting return false; } /* return true when we have completed enough of a transition to switch to VTOL control */ bool QuadPlane::tailsitter_transition_vtol_complete(void) const { if (plane.fly_inverted()) { // transition immediately return true; } if (labs(plane.ahrs.pitch_sensor) > tailsitter.transition_angle*100 || labs(plane.ahrs.roll_sensor) > tailsitter.transition_angle*100 || AP_HAL::millis() - transition_start_ms > 2000) { return true; } // still waiting attitude_control->reset_rate_controller_I_terms(); return false; } // handle different tailsitter input types void QuadPlane::tailsitter_check_input(void) { if (tailsitter_active() && tailsitter.input_type == TAILSITTER_INPUT_PLANE) { // the user has asked for body frame controls when tailsitter // is active. We switch around the control_in value for the // channels to do this, as that ensures the value is // consistent throughout the code int16_t roll_in = plane.channel_roll->get_control_in(); int16_t yaw_in = plane.channel_rudder->get_control_in(); plane.channel_roll->set_control_in(yaw_in); plane.channel_rudder->set_control_in(-roll_in); } } /* return true if we are a tailsitter transitioning to VTOL flight */ bool QuadPlane::in_tailsitter_vtol_transition(void) const { return is_tailsitter() && in_vtol_mode() && transition_state == TRANSITION_ANGLE_WAIT_VTOL; } /* account for speed scaling of control surfaces in hover */ void QuadPlane::tailsitter_speed_scaling(void) { const float hover_throttle = motors->get_throttle_hover(); const float throttle = motors->get_throttle(); float scaling; if (is_zero(throttle)) { scaling = tailsitter.throttle_scale_max; } else { scaling = constrain_float(hover_throttle / throttle, 0, tailsitter.throttle_scale_max); } const SRV_Channel::Aux_servo_function_t functions[2] = { SRV_Channel::Aux_servo_function_t::k_aileron, SRV_Channel::Aux_servo_function_t::k_elevator}; for (uint8_t i=0; i