/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Copter.h" // Traditional helicopter variables and functions #if FRAME_CONFIG == HELI_FRAME #ifndef HELI_DYNAMIC_FLIGHT_SPEED_MIN #define HELI_DYNAMIC_FLIGHT_SPEED_MIN 500 // we are in "dynamic flight" when the speed is over 1m/s for 2 seconds #endif // counter to control dynamic flight profile static int8_t heli_dynamic_flight_counter; // heli_init - perform any special initialisation required for the tradheli void Copter::heli_init() { // pre-load stab col values as mode is initialized as Stabilize, but stabilize_init() function is not run on start-up. input_manager.set_use_stab_col(true); input_manager.set_stab_col_ramp(1.0); } // heli_check_dynamic_flight - updates the dynamic_flight flag based on our horizontal velocity // should be called at 50hz void Copter::check_dynamic_flight(void) { if (!motors.armed() || !motors.rotor_runup_complete() || control_mode == LAND || (control_mode==RTL && rtl_state == RTL_Land) || (control_mode == AUTO && auto_mode == Auto_Land)) { heli_dynamic_flight_counter = 0; heli_flags.dynamic_flight = false; return; } bool moving = false; // with GPS lock use inertial nav to determine if we are moving if (position_ok()) { // get horizontal velocity float velocity = inertial_nav.get_velocity_xy(); moving = (velocity >= HELI_DYNAMIC_FLIGHT_SPEED_MIN); }else{ // with no GPS lock base it on throttle and forward lean angle moving = (motors.get_throttle() > 0.8f || ahrs.pitch_sensor < -1500); } if (!moving && rangefinder_state.enabled && rangefinder.status() == RangeFinder::RangeFinder_Good) { // when we are more than 2m from the ground with good // rangefinder lock consider it to be dynamic flight moving = (rangefinder.distance_cm() > 200); } if (moving) { // if moving for 2 seconds, set the dynamic flight flag if (!heli_flags.dynamic_flight) { heli_dynamic_flight_counter++; if (heli_dynamic_flight_counter >= 100) { heli_flags.dynamic_flight = true; heli_dynamic_flight_counter = 100; } } }else{ // if not moving for 2 seconds, clear the dynamic flight flag if (heli_flags.dynamic_flight) { if (heli_dynamic_flight_counter > 0) { heli_dynamic_flight_counter--; }else{ heli_flags.dynamic_flight = false; } } } } // update_heli_control_dynamics - pushes several important factors up into AP_MotorsHeli. // should be run between the rate controller and the servo updates. void Copter::update_heli_control_dynamics(void) { // Use Leaky_I if we are not moving fast attitude_control.use_leaky_i(!heli_flags.dynamic_flight); if (ap.land_complete || (is_zero(motors.get_desired_rotor_speed()))){ // if we are landed or there is no rotor power demanded, decrement slew scalar hover_roll_trim_scalar_slew--; } else { // if we are not landed and motor power is demanded, increment slew scalar hover_roll_trim_scalar_slew++; } hover_roll_trim_scalar_slew = constrain_int16(hover_roll_trim_scalar_slew, 0, scheduler.get_loop_rate_hz()); // set hover roll trim scalar, will ramp from 0 to 1 over 1 second after we think helicopter has taken off attitude_control.set_hover_roll_trim_scalar((float)(hover_roll_trim_scalar_slew/scheduler.get_loop_rate_hz())); } // heli_update_landing_swash - sets swash plate flag so higher minimum is used when landed or landing // should be called soon after update_land_detector in main code void Copter::heli_update_landing_swash() { switch(control_mode) { case ACRO: case STABILIZE: case DRIFT: case SPORT: // manual modes always uses full swash range motors.set_collective_for_landing(false); break; case LAND: // landing always uses limit swash range motors.set_collective_for_landing(true); break; case RTL: if (rtl_state == RTL_Land) { motors.set_collective_for_landing(true); }else{ motors.set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed); } break; case AUTO: if (auto_mode == Auto_Land) { motors.set_collective_for_landing(true); }else{ motors.set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed); } break; default: // auto and hold use limited swash when landed motors.set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed); break; } } // heli_update_rotor_speed_targets - reads pilot input and passes new rotor speed targets to heli motors object void Copter::heli_update_rotor_speed_targets() { static bool rotor_runup_complete_last = false; // get rotor control method uint8_t rsc_control_mode = motors.get_rsc_mode(); float rsc_control_deglitched = rotor_speed_deglitch_filter.apply((float)g.rc_8.get_control_in()) * 0.001f; switch (rsc_control_mode) { case ROTOR_CONTROL_MODE_SPEED_PASSTHROUGH: // pass through pilot desired rotor speed if control input is higher than 10, creating a deadband at the bottom if (rsc_control_deglitched > 0.01f) { motors.set_interlock(true); motors.set_desired_rotor_speed(rsc_control_deglitched); } else { motors.set_interlock(false); motors.set_desired_rotor_speed(0.0f); } break; case ROTOR_CONTROL_MODE_SPEED_SETPOINT: case ROTOR_CONTROL_MODE_OPEN_LOOP_POWER_OUTPUT: case ROTOR_CONTROL_MODE_CLOSED_LOOP_POWER_OUTPUT: // pass setpoint through as desired rotor speed, this is almost pointless as the Setpoint serves no function in this mode // other than being used to create a crude estimate of rotor speed if (rsc_control_deglitched > 0.0f) { motors.set_interlock(true); motors.set_desired_rotor_speed(motors.get_rsc_setpoint()); }else{ motors.set_interlock(false); motors.set_desired_rotor_speed(0.0f); } break; } // when rotor_runup_complete changes to true, log event if (!rotor_runup_complete_last && motors.rotor_runup_complete()){ Log_Write_Event(DATA_ROTOR_RUNUP_COMPLETE); } else if (rotor_runup_complete_last && !motors.rotor_runup_complete()){ Log_Write_Event(DATA_ROTOR_SPEED_BELOW_CRITICAL); } rotor_runup_complete_last = motors.rotor_runup_complete(); } #endif // FRAME_CONFIG == HELI_FRAME