/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #if HAL_WITH_UAVCAN #include #include #include #include #include #include #include #include #include #include "AP_ToshibaCAN.h" extern const AP_HAL::HAL& hal; #define debug_can(level_debug, fmt, args...) do { if ((level_debug) <= AP::can().get_debug_level_driver(_driver_index)) { printf(fmt, ##args); }} while (0) // data format for messages from flight controller static const uint8_t COMMAND_STOP = 0x0; static const uint8_t COMMAND_LOCK = 0x10; static const uint8_t COMMAND_REQUEST_DATA = 0x20; static const uint8_t COMMAND_MOTOR3 = 0x3B; static const uint8_t COMMAND_MOTOR2 = 0x3D; static const uint8_t COMMAND_MOTOR1 = 0x3F; // data format for messages from ESC static const uint8_t MOTOR_DATA1 = 0x40; static const uint8_t MOTOR_DATA2 = 0x50; static const uint8_t MOTOR_DATA3 = 0x60; static const uint8_t MOTOR_DATA5 = 0x80; // processing definitions static const uint16_t TOSHIBACAN_OUTPUT_MIN = 6300; static const uint16_t TOSHIBACAN_OUTPUT_MAX = 32000; static const uint16_t TOSHIBACAN_SEND_TIMEOUT_US = 500; static const uint8_t CAN_IFACE_INDEX = 0; // telemetry definitions static const uint32_t TOSHIBA_CAN_ESC_UPDATE_MS = 100; AP_ToshibaCAN::AP_ToshibaCAN() { debug_can(2, "ToshibaCAN: constructed\n\r"); } AP_ToshibaCAN *AP_ToshibaCAN::get_tcan(uint8_t driver_index) { if (driver_index >= AP::can().get_num_drivers() || AP::can().get_protocol_type(driver_index) != AP_BoardConfig_CAN::Protocol_Type_ToshibaCAN) { return nullptr; } return static_cast(AP::can().get_driver(driver_index)); } // initialise ToshibaCAN bus void AP_ToshibaCAN::init(uint8_t driver_index, bool enable_filters) { _driver_index = driver_index; debug_can(2, "ToshibaCAN: starting init\n\r"); if (_initialized) { debug_can(1, "ToshibaCAN: already initialized\n\r"); return; } AP_HAL::CANManager* can_mgr = hal.can_mgr[driver_index]; if (can_mgr == nullptr) { debug_can(1, "ToshibaCAN: no mgr for this driver\n\r"); return; } if (!can_mgr->is_initialized()) { debug_can(1, "ToshibaCAN: mgr not initialized\n\r"); return; } _can_driver = can_mgr->get_driver(); if (_can_driver == nullptr) { debug_can(1, "ToshibaCAN: no CAN driver\n\r"); return; } // start calls to loop in separate thread if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_ToshibaCAN::loop, void), _thread_name, 4096, AP_HAL::Scheduler::PRIORITY_MAIN, 1)) { debug_can(1, "ToshibaCAN: couldn't create thread\n\r"); return; } _initialized = true; debug_can(2, "ToshibaCAN: init done\n\r"); return; } // loop to send output to ESCs in background thread void AP_ToshibaCAN::loop() { uavcan::MonotonicTime timeout; const uint32_t timeout_us = MIN(AP::scheduler().get_loop_period_us(), TOSHIBACAN_SEND_TIMEOUT_US); while (true) { if (!_initialized) { // if not initialised wait 2ms debug_can(2, "ToshibaCAN: not initialized\n\r"); hal.scheduler->delay_microseconds(2000); continue; } // check for updates if (update_count == update_count_sent) { hal.scheduler->delay_microseconds(50); continue; } // prepare commands and frames if (send_stage == 0) { motor_lock_cmd_t unlock_cmd = {}; motor_rotation_cmd_t mot_rot_cmd1; motor_rotation_cmd_t mot_rot_cmd2; motor_rotation_cmd_t mot_rot_cmd3; { // take semaphore to read scaled motor outputs WITH_SEMAPHORE(_rc_out_sem); // prepare command to lock or unlock motors unlock_cmd.motor1 = (_scaled_output[0] == 0) ? 2 : 1; unlock_cmd.motor2 = (_scaled_output[1] == 0) ? 2 : 1; unlock_cmd.motor3 = (_scaled_output[2] == 0) ? 2 : 1; unlock_cmd.motor4 = (_scaled_output[3] == 0) ? 2 : 1; unlock_cmd.motor5 = (_scaled_output[4] == 0) ? 2 : 1; unlock_cmd.motor6 = (_scaled_output[5] == 0) ? 2 : 1; unlock_cmd.motor7 = (_scaled_output[6] == 0) ? 2 : 1; unlock_cmd.motor8 = (_scaled_output[7] == 0) ? 2 : 1; unlock_cmd.motor9 = (_scaled_output[8] == 0) ? 2 : 1; unlock_cmd.motor10 = (_scaled_output[9] == 0) ? 2 : 1; unlock_cmd.motor11 = (_scaled_output[10] == 0) ? 2 : 1; unlock_cmd.motor12 = (_scaled_output[11] == 0) ? 2 : 1; // prepare command to spin motors in bank1 mot_rot_cmd1.motor1 = htobe16(_scaled_output[0]); mot_rot_cmd1.motor2 = htobe16(_scaled_output[1]); mot_rot_cmd1.motor3 = htobe16(_scaled_output[2]); mot_rot_cmd1.motor4 = htobe16(_scaled_output[3]); // prepare message to spin motors in bank2 mot_rot_cmd2.motor1 = htobe16(_scaled_output[4]); mot_rot_cmd2.motor2 = htobe16(_scaled_output[5]); mot_rot_cmd2.motor3 = htobe16(_scaled_output[6]); mot_rot_cmd2.motor4 = htobe16(_scaled_output[7]); // prepare message to spin motors in bank3 mot_rot_cmd3.motor1 = htobe16(_scaled_output[8]); mot_rot_cmd3.motor2 = htobe16(_scaled_output[9]); mot_rot_cmd3.motor3 = htobe16(_scaled_output[10]); mot_rot_cmd3.motor4 = htobe16(_scaled_output[11]); // copy update time update_count_buffered = update_count; } unlock_frame = {(uint8_t)COMMAND_LOCK, unlock_cmd.data, sizeof(unlock_cmd.data)}; mot_rot_frame1 = {((uint8_t)COMMAND_MOTOR1 & uavcan::CanFrame::MaskStdID), mot_rot_cmd1.data, sizeof(mot_rot_cmd1.data)}; mot_rot_frame2 = {((uint8_t)COMMAND_MOTOR2 & uavcan::CanFrame::MaskStdID), mot_rot_cmd2.data, sizeof(mot_rot_cmd2.data)}; mot_rot_frame3 = {((uint8_t)COMMAND_MOTOR3 & uavcan::CanFrame::MaskStdID), mot_rot_cmd3.data, sizeof(mot_rot_cmd3.data)}; // advance to next stage send_stage++; } // send unlock command if (send_stage == 1) { timeout = uavcan::MonotonicTime::fromUSec(AP_HAL::micros64() + timeout_us); if (!write_frame(unlock_frame, timeout)) { continue; } send_stage++; } // send output to motor bank3 if (send_stage == 2) { timeout = uavcan::MonotonicTime::fromUSec(AP_HAL::micros64() + timeout_us); if (!write_frame(mot_rot_frame3, timeout)) { continue; } send_stage++; } // send output to motor bank2 if (send_stage == 3) { timeout = uavcan::MonotonicTime::fromUSec(AP_HAL::micros64() + timeout_us); if (!write_frame(mot_rot_frame2, timeout)) { continue; } send_stage++; } // send output to motor bank1 if (send_stage == 4) { timeout = uavcan::MonotonicTime::fromUSec(AP_HAL::micros64() + timeout_us); if (!write_frame(mot_rot_frame1, timeout)) { continue; } send_stage++; } // check if we should request update from ESCs if (send_stage == 5) { uint32_t now_ms = AP_HAL::millis(); uint32_t diff_ms = now_ms - _telemetry_req_ms; // check if 100ms has passed since last update request if (diff_ms >= TOSHIBA_CAN_ESC_UPDATE_MS) { // set _telem_req_ms to time we ideally should have requested update if (diff_ms >= 2 * TOSHIBA_CAN_ESC_UPDATE_MS) { _telemetry_req_ms = now_ms; } else { _telemetry_req_ms += TOSHIBA_CAN_ESC_UPDATE_MS; } // prepare command to request data1 (rpm and voltage) from all ESCs motor_request_data_cmd_t request_data_cmd = {}; request_data_cmd.motor1 = 1; request_data_cmd.motor2 = 1; request_data_cmd.motor3 = 1; request_data_cmd.motor4 = 1; request_data_cmd.motor5 = 1; request_data_cmd.motor6 = 1; request_data_cmd.motor7 = 1; request_data_cmd.motor8 = 1; request_data_cmd.motor9 = 1; request_data_cmd.motor10 = 1; request_data_cmd.motor11 = 1; request_data_cmd.motor12 = 1; uavcan::CanFrame request_data_frame; request_data_frame = {(uint8_t)COMMAND_REQUEST_DATA, request_data_cmd.data, sizeof(request_data_cmd.data)}; // send request data command timeout = uavcan::MonotonicTime::fromUSec(AP_HAL::micros64() + timeout_us); if (!write_frame(request_data_frame, timeout)) { continue; } // increment count to request temperature _telemetry_temp_req_counter++; } send_stage++; } // check if we should request temperature from ESCs if (send_stage == 6) { if (_telemetry_temp_req_counter > 10) { _telemetry_temp_req_counter = 0; // prepare command to request data2 (temperature) from all ESCs motor_request_data_cmd_t request_data_cmd = {}; request_data_cmd.motor1 = 2; request_data_cmd.motor2 = 2; request_data_cmd.motor3 = 2; request_data_cmd.motor4 = 2; request_data_cmd.motor5 = 2; request_data_cmd.motor6 = 2; request_data_cmd.motor7 = 2; request_data_cmd.motor8 = 2; request_data_cmd.motor9 = 2; request_data_cmd.motor10 = 2; request_data_cmd.motor11 = 2; request_data_cmd.motor12 = 2; uavcan::CanFrame request_data_frame; request_data_frame = {(uint8_t)COMMAND_REQUEST_DATA, request_data_cmd.data, sizeof(request_data_cmd.data)}; // send request data command timeout = uavcan::MonotonicTime::fromUSec(AP_HAL::micros64() + timeout_us); if (!write_frame(request_data_frame, timeout)) { continue; } } send_stage++; } // check for replies from ESCs if (send_stage == 7) { uavcan::CanFrame recv_frame; while (read_frame(recv_frame, timeout)) { // decode rpm and voltage data if ((recv_frame.id >= MOTOR_DATA1) && (recv_frame.id <= MOTOR_DATA1 + 12)) { // copy contents to our structure motor_reply_data1_t reply_data; memcpy(reply_data.data, recv_frame.data, sizeof(reply_data.data)); // store response in telemetry array uint8_t esc_id = recv_frame.id - MOTOR_DATA1; if (esc_id < TOSHIBACAN_MAX_NUM_ESCS) { WITH_SEMAPHORE(_telem_sem); _telemetry[esc_id].rpm = be16toh(reply_data.rpm); _telemetry[esc_id].millivolts = be16toh(reply_data.millivolts); _telemetry[esc_id].count++; _telemetry[esc_id].new_data = true; _esc_present_bitmask |= ((uint32_t)1 << esc_id); } } // decode temperature data if ((recv_frame.id >= MOTOR_DATA2) && (recv_frame.id <= MOTOR_DATA2 + 12)) { // motor data2 data format is 8 bytes (64 bits) // 10 bits: U temperature // 10 bits: V temperature // 10 bits: W temperature // 10 bits: motor temperature // remaining 24 bits: reserved uint16_t u_temp = ((uint16_t)recv_frame.data[0] << 2) | ((uint16_t)recv_frame.data[1] >> 6); uint16_t v_temp = (((uint16_t)recv_frame.data[1] & (uint16_t)0x3F) << 4) | (((uint16_t)recv_frame.data[2] & (uint16_t)0xF0) >> 4); uint16_t w_temp = (((uint16_t)recv_frame.data[2] & (uint16_t)0x0F) << 6) | (((uint16_t)recv_frame.data[3] & (uint16_t)0xFC) >> 2); uint16_t temp_max = MAX(u_temp, MAX(v_temp, w_temp)); // store repose in telemetry array uint8_t esc_id = recv_frame.id - MOTOR_DATA2; if (esc_id < TOSHIBACAN_MAX_NUM_ESCS) { WITH_SEMAPHORE(_telem_sem); _telemetry[esc_id].temperature = temp_max < 20 ? 0 : temp_max / 5 - 20; _esc_present_bitmask |= ((uint32_t)1 << esc_id); } } } } // success! send_stage = 0; // record success so we don't send this frame again update_count_sent = update_count_buffered; } } // write frame on CAN bus bool AP_ToshibaCAN::write_frame(uavcan::CanFrame &out_frame, uavcan::MonotonicTime timeout) { // wait for space in buffer to send command uavcan::CanSelectMasks inout_mask; do { inout_mask.read = 0; inout_mask.write = 1 << CAN_IFACE_INDEX; _select_frames[CAN_IFACE_INDEX] = &out_frame; _can_driver->select(inout_mask, _select_frames, timeout); // delay if no space is available to send if (!inout_mask.write) { hal.scheduler->delay_microseconds(50); } } while (!inout_mask.write); // send frame and return success return (_can_driver->getIface(CAN_IFACE_INDEX)->send(out_frame, timeout, uavcan::CanIOFlagAbortOnError) == 1); } // read frame on CAN bus, returns true on success bool AP_ToshibaCAN::read_frame(uavcan::CanFrame &recv_frame, uavcan::MonotonicTime timeout) { // wait for space in buffer to read uavcan::CanSelectMasks inout_mask; inout_mask.read = 1 << CAN_IFACE_INDEX; inout_mask.write = 0; _select_frames[CAN_IFACE_INDEX] = &recv_frame; _can_driver->select(inout_mask, _select_frames, timeout); // return false if no data is available to read if (!inout_mask.read) { return false; } uavcan::MonotonicTime time; uavcan::UtcTime utc_time; uavcan::CanIOFlags flags {}; // read frame and return success return (_can_driver->getIface(CAN_IFACE_INDEX)->receive(recv_frame, time, utc_time, flags) == 1); } // called from SRV_Channels void AP_ToshibaCAN::update() { // take semaphore and update outputs { WITH_SEMAPHORE(_rc_out_sem); for (uint8_t i = 0; i < MIN(TOSHIBACAN_MAX_NUM_ESCS, 16); i++) { SRV_Channel *c = SRV_Channels::srv_channel(i); if (c == nullptr) { _scaled_output[i] = 0; } else { uint16_t pwm_out = c->get_output_pwm(); if (pwm_out <= 1000) { _scaled_output[i] = 0; } else if (pwm_out >= 2000) { _scaled_output[i] = TOSHIBACAN_OUTPUT_MAX; } else { _scaled_output[i] = TOSHIBACAN_OUTPUT_MIN + (pwm_out - 1000) * 0.001f * (TOSHIBACAN_OUTPUT_MAX - TOSHIBACAN_OUTPUT_MIN); } } } update_count++; } // log ESCs telemetry info AP_Logger *df = AP_Logger::get_singleton(); if (df && df->logging_enabled()) { WITH_SEMAPHORE(_telem_sem); // log if any new data received. Logging only supports up to 8 ESCs uint64_t time_us = AP_HAL::micros64(); for (uint8_t i = 0; i < MIN(TOSHIBACAN_MAX_NUM_ESCS, 8); i++) { if (_telemetry[i].new_data) { df->Write_ESC(i, time_us, _telemetry[i].rpm * 100U, _telemetry[i].millivolts * 0.1f, 0, _telemetry[i].temperature * 100.0f, 0); _telemetry[i].new_data = false; } } } } // send ESC telemetry messages over MAVLink void AP_ToshibaCAN::send_esc_telemetry_mavlink(uint8_t mav_chan) { // compile time check this method handles the correct number of motors static_assert(TOSHIBACAN_MAX_NUM_ESCS == 12, "update AP_ToshibaCAN::send_esc_telemetry_mavlink only handles 12 motors"); // return immediately if no ESCs have been found if (_esc_present_bitmask == 0) { return; } // return if no space in output buffer to send mavlink messages if (!HAVE_PAYLOAD_SPACE((mavlink_channel_t)mav_chan, ESC_TELEMETRY_1_TO_4)) { return; } // output telemetry messages { // take semaphore to access telemetry data WITH_SEMAPHORE(_telem_sem); // loop through 3 groups of 4 ESCs for (uint8_t i = 0; i < 3; i++) { // skip this group of ESCs if no data to send if ((_esc_present_bitmask & ((uint32_t)0x0F << i*4)) == 0) { continue; } // arrays to hold output uint8_t temperature[4] {}; uint16_t voltage[4] {}; uint16_t rpm[4] {}; uint16_t count[4] {}; uint16_t nosup[4] {}; // single empty array for unsupported current and current_tot // fill in output arrays for (uint8_t j = 0; j < 4; j++) { uint8_t esc_id = i * 4 + j; temperature[j] = _telemetry[esc_id].temperature; voltage[j] = _telemetry[esc_id].millivolts * 0.1f; rpm[j] = _telemetry[esc_id].rpm; count[j] = _telemetry[esc_id].count; } // send messages switch (i) { case 0: mavlink_msg_esc_telemetry_1_to_4_send((mavlink_channel_t)mav_chan, temperature, voltage, nosup, nosup, rpm, count); break; case 1: mavlink_msg_esc_telemetry_5_to_8_send((mavlink_channel_t)mav_chan, temperature, voltage, nosup, nosup, rpm, count); break; case 2: mavlink_msg_esc_telemetry_9_to_12_send((mavlink_channel_t)mav_chan, temperature, voltage, nosup, nosup, rpm, count); break; default: break; } } } } #endif // HAL_WITH_UAVCAN