#include "AC_Fence.h" #if AP_FENCE_ENABLED #include #ifndef AC_FENCE_DUMMY_METHODS_ENABLED #define AC_FENCE_DUMMY_METHODS_ENABLED (!(APM_BUILD_TYPE(APM_BUILD_Rover) | APM_BUILD_COPTER_OR_HELI | APM_BUILD_TYPE(APM_BUILD_ArduPlane) | APM_BUILD_TYPE(APM_BUILD_ArduSub) | (AP_FENCE_ENABLED == 1))) #endif #if !AC_FENCE_DUMMY_METHODS_ENABLED #include #include #include #include extern const AP_HAL::HAL& hal; #if APM_BUILD_TYPE(APM_BUILD_Rover) #define AC_FENCE_TYPE_DEFAULT AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON #elif APM_BUILD_TYPE(APM_BUILD_ArduPlane) #define AC_FENCE_TYPE_DEFAULT AC_FENCE_TYPE_POLYGON #else #define AC_FENCE_TYPE_DEFAULT AC_FENCE_TYPE_ALT_MAX | AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON #endif // default boundaries #define AC_FENCE_ALT_MAX_DEFAULT 100.0f // default max altitude is 100m #define AC_FENCE_ALT_MIN_DEFAULT -10.0f // default maximum depth in meters #define AC_FENCE_CIRCLE_RADIUS_DEFAULT 300.0f // default circular fence radius is 300m #define AC_FENCE_ALT_MAX_BACKUP_DISTANCE 20.0f // after fence is broken we recreate the fence 20m further up #define AC_FENCE_ALT_MIN_BACKUP_DISTANCE 20.0f // after fence is broken we recreate the fence 20m further down #define AC_FENCE_MARGIN_DEFAULT 2.0f // default distance in meters that autopilot's should maintain from the fence to avoid a breach #define AC_FENCE_MANUAL_RECOVERY_TIME_MIN 10000 // pilot has 10seconds to recover during which time the autopilot will not attempt to re-take control #if APM_BUILD_TYPE(APM_BUILD_ArduPlane) #define AC_FENCE_CIRCLE_RADIUS_BACKUP_DISTANCE 100.0 // after fence is broken we recreate the fence 50m further out #else #define AC_FENCE_CIRCLE_RADIUS_BACKUP_DISTANCE 20.0 // after fence is broken we recreate the fence 20m further out #endif const AP_Param::GroupInfo AC_Fence::var_info[] = { // @Param: ENABLE // @DisplayName: Fence enable/disable // @Description: Allows you to enable (1) or disable (0) the fence functionality // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO("ENABLE", 0, AC_Fence, _enabled, 0), // @Param: TYPE // @DisplayName: Fence Type // @Description: Enabled fence types held as bitmask // @Bitmask{Rover}: 1:Circle Centered on Home,2:Inclusion/Exclusion Circles+Polygons // @Bitmask{Copter, Plane, Sub}: 0:Max altitude,1:Circle Centered on Home,2:Inclusion/Exclusion Circles+Polygons,3:Min altitude // @User: Standard AP_GROUPINFO("TYPE", 1, AC_Fence, _enabled_fences, AC_FENCE_TYPE_DEFAULT), // @Param: ACTION // @DisplayName: Fence Action // @Description: What action should be taken when fence is breached // @Values{Copter}: 0:Report Only,1:RTL or Land,2:Always Land,3:SmartRTL or RTL or Land,4:Brake or Land,5:SmartRTL or Land // @Values{Rover}: 0:Report Only,1:RTL or Hold,2:Hold,3:SmartRTL or RTL or Hold,4:SmartRTL or Hold // @Values{Plane}: 0:Report Only,1:RTL,6:Guided,7:GuidedThrottlePass // @Values: 0:Report Only,1:RTL or Land // @User: Standard AP_GROUPINFO("ACTION", 2, AC_Fence, _action, AC_FENCE_ACTION_RTL_AND_LAND), // @Param{Copter, Plane, Sub}: ALT_MAX // @DisplayName: Fence Maximum Altitude // @Description: Maximum altitude allowed before geofence triggers // @Units: m // @Range: 10 1000 // @Increment: 1 // @User: Standard AP_GROUPINFO_FRAME("ALT_MAX", 3, AC_Fence, _alt_max, AC_FENCE_ALT_MAX_DEFAULT, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_SUB | AP_PARAM_FRAME_TRICOPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_PLANE), // @Param: RADIUS // @DisplayName: Circular Fence Radius // @Description: Circle fence radius which when breached will cause an RTL // @Units: m // @Range: 30 10000 // @User: Standard AP_GROUPINFO("RADIUS", 4, AC_Fence, _circle_radius, AC_FENCE_CIRCLE_RADIUS_DEFAULT), // @Param: MARGIN // @DisplayName: Fence Margin // @Description: Distance that autopilot's should maintain from the fence to avoid a breach // @Units: m // @Range: 1 10 // @User: Standard AP_GROUPINFO("MARGIN", 5, AC_Fence, _margin, AC_FENCE_MARGIN_DEFAULT), // @Param: TOTAL // @DisplayName: Fence polygon point total // @Description: Number of polygon points saved in eeprom (do not update manually) // @Range: 1 20 // @User: Standard AP_GROUPINFO("TOTAL", 6, AC_Fence, _total, 0), // @Param{Copter, Plane, Sub}: ALT_MIN // @DisplayName: Fence Minimum Altitude // @Description: Minimum altitude allowed before geofence triggers // @Units: m // @Range: -100 100 // @Increment: 1 // @User: Standard AP_GROUPINFO_FRAME("ALT_MIN", 7, AC_Fence, _alt_min, AC_FENCE_ALT_MIN_DEFAULT, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_SUB | AP_PARAM_FRAME_TRICOPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_PLANE), // @Param{Plane}: RET_RALLY // @DisplayName: Fence Return to Rally // @Description: Should the vehicle return to fence return point or rally point // @Values: 0:Fence Return Point,1:Nearest Rally Point // @Range: 0 1 // @Increment: 1 // @User: Standard AP_GROUPINFO_FRAME("RET_RALLY", 8, AC_Fence, _ret_rally, 0, AP_PARAM_FRAME_PLANE), // @Param{Plane}: RET_ALT // @DisplayName: Fence Return Altitude // @Description: Altitude the vehicle will transit to when a fence breach occurs // @Units: m // @Range: 0 32767 // @Increment: 1 // @User: Standard AP_GROUPINFO_FRAME("RET_ALT", 9, AC_Fence, _ret_altitude, 0.0f, AP_PARAM_FRAME_PLANE), // @Param{Plane}: AUTOENABLE // @DisplayName: Fence Auto-Enable // @Description: Auto-enable of fence // @Values: 0:AutoEnableOff,1:AutoEnableOnTakeoff,2:AutoEnableDisableFloorOnLanding,3:AutoEnableOnlyWhenArmed // @Range: 0 3 // @Increment: 1 // @User: Standard AP_GROUPINFO_FRAME("AUTOENABLE", 10, AC_Fence, _auto_enabled, static_cast(AutoEnable::ALWAYS_DISABLED), AP_PARAM_FRAME_PLANE), // @Param{Plane}: OPTIONS // @DisplayName: Fence options // @Description: 0:Disable mode change following fence action until fence breach is cleared. When bit 1 is set the allowable flight areas is the union of all polygon and circle fence areas instead of the intersection, which means a fence breach occurs only if you are outside all of the fence areas. // @Bitmask: 0:Disable mode change following fence action until fence breach is cleared, 1:Allow union of inclusion areas // @User: Standard AP_GROUPINFO_FRAME("OPTIONS", 11, AC_Fence, _options, static_cast(OPTIONS::DISABLE_MODE_CHANGE), AP_PARAM_FRAME_PLANE), AP_GROUPEND }; /// Default constructor. AC_Fence::AC_Fence() { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (_singleton != nullptr) { AP_HAL::panic("Fence must be singleton"); } #endif _singleton = this; AP_Param::setup_object_defaults(this, var_info); } /// enable the Fence code generally; a master switch for all fences void AC_Fence::enable(bool value) { if (_enabled && !value) { AP::logger().Write_Event(LogEvent::FENCE_DISABLE); } else if (!_enabled && value) { AP::logger().Write_Event(LogEvent::FENCE_ENABLE); } _enabled.set(value); if (!value) { clear_breach(AC_FENCE_TYPE_ALT_MIN | AC_FENCE_TYPE_ALT_MAX | AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON); disable_floor(); } else { enable_floor(); } } /// enable/disable fence floor only void AC_Fence::enable_floor() { if (!_floor_enabled) { // Floor is currently disabled, enable it AP::logger().Write_Event(LogEvent::FENCE_FLOOR_ENABLE); } _floor_enabled = true; } void AC_Fence::disable_floor() { if (_floor_enabled) { // Floor is currently enabled, disable it AP::logger().Write_Event(LogEvent::FENCE_FLOOR_DISABLE); } _floor_enabled = false; clear_breach(AC_FENCE_TYPE_ALT_MIN); } /* called when an auto-takeoff is complete */ void AC_Fence::auto_enable_fence_after_takeoff(void) { switch(auto_enabled()) { case AC_Fence::AutoEnable::ALWAYS_ENABLED: case AC_Fence::AutoEnable::ENABLE_DISABLE_FLOOR_ONLY: enable(true); gcs().send_text(MAV_SEVERITY_NOTICE, "Fence enabled (auto enabled)"); break; default: // fence does not auto-enable in other takeoff conditions break; } } /* called when performing an auto landing */ void AC_Fence::auto_disable_fence_for_landing(void) { switch (auto_enabled()) { case AC_Fence::AutoEnable::ALWAYS_ENABLED: enable(false); gcs().send_text(MAV_SEVERITY_NOTICE, "Fence disabled (auto disable)"); break; case AC_Fence::AutoEnable::ENABLE_DISABLE_FLOOR_ONLY: disable_floor(); gcs().send_text(MAV_SEVERITY_NOTICE, "Fence floor disabled (auto disable)"); break; default: // fence does not auto-disable in other landing conditions break; } } bool AC_Fence::present() const { const auto enabled_fences = _enabled_fences.get(); // A fence is present if any of the conditions are true. // * tin can (circle) is enabled // * min or max alt is enabled // * polygon fences are enabled and any fence has been uploaded if (enabled_fences & AC_FENCE_TYPE_CIRCLE || enabled_fences & AC_FENCE_TYPE_ALT_MIN || enabled_fences & AC_FENCE_TYPE_ALT_MAX || ((enabled_fences & AC_FENCE_TYPE_POLYGON) && _poly_loader.total_fence_count() > 0)) { return true; } return false; } /// get_enabled_fences - returns bitmask of enabled fences uint8_t AC_Fence::get_enabled_fences() const { if (!_enabled && !_auto_enabled) { return 0; } return _enabled_fences; } // additional checks for the polygon fence: bool AC_Fence::pre_arm_check_polygon(const char* &fail_msg) const { if (!(_enabled_fences & AC_FENCE_TYPE_POLYGON)) { // not enabled; all good return true; } if (! _poly_loader.loaded()) { fail_msg = "Fences invalid"; return false; } if (!_poly_loader.check_inclusion_circle_margin(_margin)) { fail_msg = "Margin is less than inclusion circle radius"; return false; } return true; } // additional checks for the circle fence: bool AC_Fence::pre_arm_check_circle(const char* &fail_msg) const { if (_circle_radius < 0) { fail_msg = "Invalid FENCE_RADIUS value"; return false; } if (_circle_radius < _margin) { fail_msg = "FENCE_MARGIN is less than FENCE_RADIUS"; return false; } return true; } // additional checks for the alt fence: bool AC_Fence::pre_arm_check_alt(const char* &fail_msg) const { if (_alt_max < 0.0f) { fail_msg = "Invalid FENCE_ALT_MAX value"; return false; } if (_alt_min < -100.0f) { fail_msg = "Invalid FENCE_ALT_MIN value"; return false; } return true; } /// pre_arm_check - returns true if all pre-takeoff checks have completed successfully bool AC_Fence::pre_arm_check(const char* &fail_msg) const { fail_msg = nullptr; // if fences are enabled but none selected fail pre-arm check if (enabled() && !present()) { fail_msg = "Fences enabled, but none selected"; return false; } // if not enabled or not fence set-up always return true if ((!_enabled && !_auto_enabled) || !_enabled_fences) { return true; } // if we have horizontal limits enabled, check we can get a // relative position from the AHRS if ((_enabled_fences & AC_FENCE_TYPE_CIRCLE) || (_enabled_fences & AC_FENCE_TYPE_POLYGON)) { Vector2f position; if (!AP::ahrs().get_relative_position_NE_home(position)) { fail_msg = "Fence requires position"; return false; } } if (!pre_arm_check_polygon(fail_msg)) { return false; } if (!pre_arm_check_circle(fail_msg)) { return false; } if (!pre_arm_check_alt(fail_msg)) { return false; } // check no limits are currently breached if (_breached_fences) { fail_msg = "vehicle outside fence"; return false; } // validate FENCE_MARGIN parameter range if (_margin < 0.0f) { fail_msg = "Invalid FENCE_MARGIN value"; return false; } if (_alt_max < _alt_min) { fail_msg = "FENCE_ALT_MAX < FENCE_ALT_MIN"; return false; } if (_alt_max - _alt_min <= 2.0f * _margin) { fail_msg = "FENCE_MARGIN too big"; return false; } // if we got this far everything must be ok return true; } /// returns true if we have freshly breached the maximum altitude /// fence; also may set up a fallback fence which, if breached, will /// cause the altitude fence to be freshly breached bool AC_Fence::check_fence_alt_max() { // altitude fence check if (!(_enabled_fences & AC_FENCE_TYPE_ALT_MAX)) { // not enabled; no breach return false; } AP::ahrs().get_relative_position_D_home(_curr_alt); _curr_alt = -_curr_alt; // translate Down to Up // check if we are over the altitude fence if (_curr_alt >= _alt_max) { // record distance above breach _alt_max_breach_distance = _curr_alt - _alt_max; // check for a new breach or a breach of the backup fence if (!(_breached_fences & AC_FENCE_TYPE_ALT_MAX) || (!is_zero(_alt_max_backup) && _curr_alt >= _alt_max_backup)) { // new breach record_breach(AC_FENCE_TYPE_ALT_MAX); // create a backup fence 20m higher up _alt_max_backup = _curr_alt + AC_FENCE_ALT_MAX_BACKUP_DISTANCE; // new breach return true; } // old breach return false; } // not breached // clear max alt breach if present if ((_breached_fences & AC_FENCE_TYPE_ALT_MAX) != 0) { clear_breach(AC_FENCE_TYPE_ALT_MAX); _alt_max_backup = 0.0f; _alt_max_breach_distance = 0.0f; } return false; } /// returns true if we have freshly breached the minimum altitude /// fence; also may set up a fallback fence which, if breached, will /// cause the altitude fence to be freshly breached bool AC_Fence::check_fence_alt_min() { // altitude fence check if (!(_enabled_fences & AC_FENCE_TYPE_ALT_MIN)) { // not enabled; no breach return false; } AP::ahrs().get_relative_position_D_home(_curr_alt); _curr_alt = -_curr_alt; // translate Down to Up // check if we are under the altitude fence if (_curr_alt <= _alt_min) { // record distance below breach _alt_min_breach_distance = _alt_min - _curr_alt; // check for a new breach or a breach of the backup fence if (!(_breached_fences & AC_FENCE_TYPE_ALT_MIN) || (!is_zero(_alt_min_backup) && _curr_alt <= _alt_min_backup)) { // new breach record_breach(AC_FENCE_TYPE_ALT_MIN); // create a backup fence 20m lower down _alt_min_backup = _curr_alt - AC_FENCE_ALT_MIN_BACKUP_DISTANCE; // new breach return true; } // old breach return false; } // not breached // clear min alt breach if present if ((_breached_fences & AC_FENCE_TYPE_ALT_MIN) != 0) { clear_breach(AC_FENCE_TYPE_ALT_MIN); _alt_min_backup = 0.0f; _alt_min_breach_distance = 0.0f; } return false; } // check_fence_polygon - returns true if the poly fence is freshly // breached. That includes being inside exclusion zones and outside // inclusions zones bool AC_Fence::check_fence_polygon() { const bool was_breached = _breached_fences & AC_FENCE_TYPE_POLYGON; const bool breached = ((_enabled_fences & AC_FENCE_TYPE_POLYGON) && _poly_loader.breached()); if (breached) { if (!was_breached) { record_breach(AC_FENCE_TYPE_POLYGON); return true; } return false; } if (was_breached) { clear_breach(AC_FENCE_TYPE_POLYGON); } return false; } /// check_fence_circle - returns true if the circle fence (defined via /// parameters) has been freshly breached. May also set up a backup /// fence outside the fence and return a fresh breach if that backup /// fence is breaced. bool AC_Fence::check_fence_circle() { if (!(_enabled_fences & AC_FENCE_TYPE_CIRCLE)) { // not enabled; no breach return false; } Vector2f home; if (AP::ahrs().get_relative_position_NE_home(home)) { // we (may) remain breached if we can't update home _home_distance = home.length(); } // check if we are outside the fence if (_home_distance >= _circle_radius) { // record distance outside the fence _circle_breach_distance = _home_distance - _circle_radius; // check for a new breach or a breach of the backup fence if (!(_breached_fences & AC_FENCE_TYPE_CIRCLE) || (!is_zero(_circle_radius_backup) && _home_distance >= _circle_radius_backup)) { // new breach // create a backup fence 20m further out record_breach(AC_FENCE_TYPE_CIRCLE); _circle_radius_backup = _home_distance + AC_FENCE_CIRCLE_RADIUS_BACKUP_DISTANCE; return true; } return false; } // not currently breached // clear circle breach if present if (_breached_fences & AC_FENCE_TYPE_CIRCLE) { clear_breach(AC_FENCE_TYPE_CIRCLE); _circle_radius_backup = 0.0f; _circle_breach_distance = 0.0f; } return false; } /// check - returns bitmask of fence types breached (if any) uint8_t AC_Fence::check() { uint8_t ret = 0; // clear any breach from a non-enabled fence clear_breach(~_enabled_fences); // return immediately if disabled if ((!_enabled && !_auto_enabled) || !_enabled_fences) { return 0; } // check if pilot is attempting to recover manually if (_manual_recovery_start_ms != 0) { // we ignore any fence breaches during the manual recovery period which is about 10 seconds if ((AP_HAL::millis() - _manual_recovery_start_ms) < AC_FENCE_MANUAL_RECOVERY_TIME_MIN) { return 0; } // recovery period has passed so reset manual recovery time // and continue with fence breach checks _manual_recovery_start_ms = 0; } // maximum altitude fence check if (check_fence_alt_max()) { ret |= AC_FENCE_TYPE_ALT_MAX; } // minimum altitude fence check if (_floor_enabled && check_fence_alt_min()) { ret |= AC_FENCE_TYPE_ALT_MIN; } // circle fence check if (check_fence_circle()) { ret |= AC_FENCE_TYPE_CIRCLE; } // polygon fence check if (check_fence_polygon()) { ret |= AC_FENCE_TYPE_POLYGON; } // return any new breaches that have occurred return ret; } // returns true if the destination is within fence (used to reject waypoints outside the fence) bool AC_Fence::check_destination_within_fence(const Location& loc) { // Altitude fence check - Fence Ceiling if ((get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX)) { int32_t alt_above_home_cm; if (loc.get_alt_cm(Location::AltFrame::ABOVE_HOME, alt_above_home_cm)) { if ((alt_above_home_cm * 0.01f) > _alt_max) { return false; } } } // Altitude fence check - Fence Floor if ((get_enabled_fences() & AC_FENCE_TYPE_ALT_MIN)) { int32_t alt_above_home_cm; if (loc.get_alt_cm(Location::AltFrame::ABOVE_HOME, alt_above_home_cm)) { if ((alt_above_home_cm * 0.01f) < _alt_min) { return false; } } } // Circular fence check if ((get_enabled_fences() & AC_FENCE_TYPE_CIRCLE)) { if (AP::ahrs().get_home().get_distance(loc) > _circle_radius) { return false; } } // polygon fence check if ((get_enabled_fences() & AC_FENCE_TYPE_POLYGON)) { if (_poly_loader.breached(loc)) { return false; } } return true; } /// record_breach - update breach bitmask, time and count void AC_Fence::record_breach(uint8_t fence_type) { // if we haven't already breached a limit, update the breach time if (!_breached_fences) { const uint32_t now = AP_HAL::millis(); _breach_time = now; // emit a message indicated we're newly-breached, but not too often if (now - _last_breach_notify_sent_ms > 1000) { _last_breach_notify_sent_ms = now; GCS_SEND_MESSAGE(MSG_FENCE_STATUS); } } // update breach count if (_breach_count < 65500) { _breach_count++; } // update bitmask _breached_fences |= fence_type; } /// clear_breach - update breach bitmask, time and count void AC_Fence::clear_breach(uint8_t fence_type) { _breached_fences &= ~fence_type; } /// get_breach_distance - returns maximum distance in meters outside /// of the given fences. fence_type is a bitmask here. float AC_Fence::get_breach_distance(uint8_t fence_type) const { float max = 0.0f; if (fence_type & AC_FENCE_TYPE_ALT_MAX) { max = MAX(_alt_max_breach_distance, max); } if (fence_type & AC_FENCE_TYPE_ALT_MIN) { max = MAX(_alt_min_breach_distance, max); } if (fence_type & AC_FENCE_TYPE_CIRCLE) { max = MAX(_circle_breach_distance, max); } return max; } /// manual_recovery_start - caller indicates that pilot is re-taking manual control so fence should be disabled for 10 seconds /// has no effect if no breaches have occurred void AC_Fence::manual_recovery_start() { // return immediate if we haven't breached a fence if (!_breached_fences) { return; } // record time pilot began manual recovery _manual_recovery_start_ms = AP_HAL::millis(); } // methods for mavlink SYS_STATUS message (send_sys_status) bool AC_Fence::sys_status_present() const { return present(); } bool AC_Fence::sys_status_enabled() const { if (!sys_status_present()) { return false; } if (_action == AC_FENCE_ACTION_REPORT_ONLY) { return false; } // Fence is only enabled when the flag is enabled return _enabled; } bool AC_Fence::sys_status_failed() const { if (!sys_status_present()) { // not failed if not present; can fail if present but not enabled return false; } if (get_breaches() != 0) { return true; } return false; } AC_PolyFence_loader &AC_Fence::polyfence() { return _poly_loader; } const AC_PolyFence_loader &AC_Fence::polyfence() const { return _poly_loader; } #else // build type is not appropriate; provide a dummy implementation: const AP_Param::GroupInfo AC_Fence::var_info[] = { AP_GROUPEND }; AC_Fence::AC_Fence() {}; void AC_Fence::enable(bool value) {}; void AC_Fence::disable_floor() {}; void AC_Fence::auto_enable_fence_after_takeoff() {}; void AC_Fence::auto_disable_fence_for_landing() {}; bool AC_Fence::present() const { return false; } uint8_t AC_Fence::get_enabled_fences() const { return 0; } bool AC_Fence::pre_arm_check(const char* &fail_msg) const { return true; } uint8_t AC_Fence::check() { return 0; } bool AC_Fence::check_destination_within_fence(const Location& loc) { return true; } float AC_Fence::get_breach_distance(uint8_t fence_type) const { return 0.0; } void AC_Fence::manual_recovery_start() {} bool AC_Fence::sys_status_present() const { return false; } bool AC_Fence::sys_status_enabled() const { return false; } bool AC_Fence::sys_status_failed() const { return false; } AC_PolyFence_loader &AC_Fence::polyfence() { return _poly_loader; } const AC_PolyFence_loader &AC_Fence::polyfence() const { return _poly_loader; } #endif // #if AC_FENCE_DUMMY_METHODS_ENABLED // singleton instance AC_Fence *AC_Fence::_singleton; namespace AP { AC_Fence *fence() { return AC_Fence::get_singleton(); } } #endif // AP_FENCE_ENABLED