// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Plane.h" #if CLI_ENABLED == ENABLED // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Common for implementation details static const struct Menu::command test_menu_commands[] = { {"pwm", MENU_FUNC(test_radio_pwm)}, {"radio", MENU_FUNC(test_radio)}, {"passthru", MENU_FUNC(test_passthru)}, {"failsafe", MENU_FUNC(test_failsafe)}, {"relay", MENU_FUNC(test_relay)}, {"waypoints", MENU_FUNC(test_wp)}, {"xbee", MENU_FUNC(test_xbee)}, {"modeswitch", MENU_FUNC(test_modeswitch)}, // Tests below here are for hardware sensors only present // when real sensors are attached or they are emulated {"gps", MENU_FUNC(test_gps)}, {"ins", MENU_FUNC(test_ins)}, {"airspeed", MENU_FUNC(test_airspeed)}, {"airpressure", MENU_FUNC(test_pressure)}, {"compass", MENU_FUNC(test_mag)}, {"logging", MENU_FUNC(test_logging)}, #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN {"shell", MENU_FUNC(test_shell)}, #endif }; // A Macro to create the Menu MENU(test_menu, "test", test_menu_commands); int8_t Plane::test_mode(uint8_t argc, const Menu::arg *argv) { cliSerial->printf("Test Mode\n\n"); test_menu.run(); return 0; } void Plane::print_hit_enter() { cliSerial->printf("Hit Enter to exit.\n\n"); } int8_t Plane::test_radio_pwm(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); hal.scheduler->delay(1000); while(1) { hal.scheduler->delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); cliSerial->printf("IN:\t1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n", (int)channel_roll->get_radio_in(), (int)channel_pitch->get_radio_in(), (int)channel_throttle->get_radio_in(), (int)channel_rudder->get_radio_in(), (int)g.rc_5.get_radio_in(), (int)g.rc_6.get_radio_in(), (int)g.rc_7.get_radio_in(), (int)g.rc_8.get_radio_in()); if(cliSerial->available() > 0) { return (0); } } } int8_t Plane::test_passthru(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); hal.scheduler->delay(1000); while(1) { hal.scheduler->delay(20); // New radio frame? (we could use also if((millis()- timer) > 20) if (hal.rcin->new_input()) { cliSerial->print("CH:"); for(int16_t i = 0; i < 8; i++) { cliSerial->print(hal.rcin->read(i)); // Print channel values print_comma(); servo_write(i, hal.rcin->read(i)); // Copy input to Servos } cliSerial->println(); } if (cliSerial->available() > 0) { return (0); } } return 0; } int8_t Plane::test_radio(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); hal.scheduler->delay(1000); // read the radio to set trims // --------------------------- trim_radio(); while(1) { hal.scheduler->delay(20); read_radio(); channel_roll->calc_pwm(); channel_pitch->calc_pwm(); channel_throttle->calc_pwm(); channel_rudder->calc_pwm(); // write out the servo PWM values // ------------------------------ set_servos(); cliSerial->printf("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n", (int)channel_roll->get_control_in(), (int)channel_pitch->get_control_in(), (int)channel_throttle->get_control_in(), (int)channel_rudder->get_control_in(), (int)g.rc_5.get_control_in(), (int)g.rc_6.get_control_in(), (int)g.rc_7.get_control_in(), (int)g.rc_8.get_control_in() ); if(cliSerial->available() > 0) { return (0); } } } int8_t Plane::test_failsafe(uint8_t argc, const Menu::arg *argv) { uint8_t fail_test = 0; print_hit_enter(); for(int16_t i = 0; i < 50; i++) { hal.scheduler->delay(20); read_radio(); } // read the radio to set trims // --------------------------- trim_radio(); oldSwitchPosition = readSwitch(); cliSerial->printf("Unplug battery, throttle in neutral, turn off radio.\n"); while(channel_throttle->get_control_in() > 0) { hal.scheduler->delay(20); read_radio(); } while(1) { hal.scheduler->delay(20); read_radio(); if(channel_throttle->get_control_in() > 0) { cliSerial->printf("THROTTLE CHANGED %d \n", (int)channel_throttle->get_control_in()); fail_test++; } if(oldSwitchPosition != readSwitch()) { cliSerial->printf("CONTROL MODE CHANGED: "); print_flight_mode(cliSerial, readSwitch()); cliSerial->println(); fail_test++; } if(rc_failsafe_active()) { cliSerial->printf("THROTTLE FAILSAFE ACTIVATED: %d, ", (int)channel_throttle->get_radio_in()); print_flight_mode(cliSerial, readSwitch()); cliSerial->println(); fail_test++; } if(fail_test > 0) { return (0); } if(cliSerial->available() > 0) { cliSerial->printf("LOS caused no change in APM.\n"); return (0); } } } int8_t Plane::test_relay(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); hal.scheduler->delay(1000); while(1) { cliSerial->printf("Relay on\n"); relay.on(0); hal.scheduler->delay(3000); if(cliSerial->available() > 0) { return (0); } cliSerial->printf("Relay off\n"); relay.off(0); hal.scheduler->delay(3000); if(cliSerial->available() > 0) { return (0); } } } int8_t Plane::test_wp(uint8_t argc, const Menu::arg *argv) { hal.scheduler->delay(1000); // save the alitude above home option if (g.RTL_altitude_cm < 0) { cliSerial->printf("Hold current altitude\n"); }else{ cliSerial->printf("Hold altitude of %dm\n", (int)g.RTL_altitude_cm/100); } cliSerial->printf("%d waypoints\n", (int)mission.num_commands()); cliSerial->printf("Hit radius: %d\n", (int)g.waypoint_radius); cliSerial->printf("Loiter radius: %d\n\n", (int)g.loiter_radius); for(uint8_t i = 0; i <= mission.num_commands(); i++) { AP_Mission::Mission_Command temp_cmd; if (mission.read_cmd_from_storage(i,temp_cmd)) { test_wp_print(temp_cmd); } } return (0); } void Plane::test_wp_print(const AP_Mission::Mission_Command& cmd) { cliSerial->printf("command #: %d id:%d options:%d p1:%d p2:%ld p3:%ld p4:%ld \n", (int)cmd.index, (int)cmd.id, (int)cmd.content.location.options, (int)cmd.p1, (long)cmd.content.location.alt, (long)cmd.content.location.lat, (long)cmd.content.location.lng); } int8_t Plane::test_xbee(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); hal.scheduler->delay(1000); cliSerial->printf("Begin XBee X-CTU Range and RSSI Test:\n"); while(1) { if (hal.uartC->available()) hal.uartC->write(hal.uartC->read()); if(cliSerial->available() > 0) { return (0); } } } int8_t Plane::test_modeswitch(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); hal.scheduler->delay(1000); cliSerial->printf("Control CH "); cliSerial->println(FLIGHT_MODE_CHANNEL, BASE_DEC); while(1) { hal.scheduler->delay(20); uint8_t switchPosition = readSwitch(); if (oldSwitchPosition != switchPosition) { cliSerial->printf("Position %d\n", (int)switchPosition); oldSwitchPosition = switchPosition; } if(cliSerial->available() > 0) { return (0); } } } /* * test the dataflash is working */ int8_t Plane::test_logging(uint8_t argc, const Menu::arg *argv) { DataFlash.ShowDeviceInfo(cliSerial); return 0; } #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN /* * run a debug shell */ int8_t Plane::test_shell(uint8_t argc, const Menu::arg *argv) { hal.util->run_debug_shell(cliSerial); return 0; } #endif //------------------------------------------------------------------------------------------- // tests in this section are for real sensors or sensors that have been simulated int8_t Plane::test_gps(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); hal.scheduler->delay(1000); uint32_t last_message_time_ms = 0; while(1) { hal.scheduler->delay(100); gps.update(); if (gps.last_message_time_ms() != last_message_time_ms) { last_message_time_ms = gps.last_message_time_ms(); const Location &loc = gps.location(); cliSerial->printf("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n", (long)loc.lat, (long)loc.lng, (long)loc.alt/100, (int)gps.num_sats()); } else { cliSerial->printf("."); } if(cliSerial->available() > 0) { return (0); } } } int8_t Plane::test_ins(uint8_t argc, const Menu::arg *argv) { //cliSerial->printf("Calibrating."); ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_wind_estimation(true); ins.init(scheduler.get_loop_rate_hz()); ahrs.reset(); print_hit_enter(); hal.scheduler->delay(1000); uint8_t counter = 0; while(1) { hal.scheduler->delay(20); if (micros() - perf.fast_loopTimer_us > 19000UL) { perf.fast_loopTimer_us = micros(); // INS // --- ahrs.update(); if(g.compass_enabled) { counter++; if(counter == 5) { compass.read(); counter = 0; } } // We are using the INS // --------------------- Vector3f gyros = ins.get_gyro(); Vector3f accels = ins.get_accel(); cliSerial->printf("r:%4d p:%4d y:%3d g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f)\n", (int)ahrs.roll_sensor / 100, (int)ahrs.pitch_sensor / 100, (uint16_t)ahrs.yaw_sensor / 100, (double)gyros.x, (double)gyros.y, (double)gyros.z, (double)accels.x, (double)accels.y, (double)accels.z); } if(cliSerial->available() > 0) { return (0); } } } int8_t Plane::test_mag(uint8_t argc, const Menu::arg *argv) { if (!g.compass_enabled) { cliSerial->printf("Compass: "); print_enabled(false); return (0); } if (!compass.init()) { cliSerial->println("Compass initialisation failed!"); return 0; } ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_wind_estimation(true); ahrs.set_compass(&compass); // we need the AHRS initialised for this test ins.init(scheduler.get_loop_rate_hz()); ahrs.reset(); uint16_t counter = 0; float heading = 0; print_hit_enter(); while(1) { hal.scheduler->delay(20); if (micros() - perf.fast_loopTimer_us > 19000UL) { perf.fast_loopTimer_us = micros(); // INS // --- ahrs.update(); if(counter % 5 == 0) { if (compass.read()) { // Calculate heading const Matrix3f &m = ahrs.get_rotation_body_to_ned(); heading = compass.calculate_heading(m); compass.learn_offsets(); } } counter++; if (counter>20) { if (compass.healthy()) { const Vector3f &mag_ofs = compass.get_offsets(); const Vector3f &mag = compass.get_field(); cliSerial->printf("Heading: %f, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n", (double)((wrap_360_cd(ToDeg(heading) * 100)) /100), (double)mag.x, (double)mag.y, (double)mag.z, (double)mag_ofs.x, (double)mag_ofs.y, (double)mag_ofs.z); } else { cliSerial->println("compass not healthy"); } counter=0; } } if (cliSerial->available() > 0) { break; } } // save offsets. This allows you to get sane offset values using // the CLI before you go flying. cliSerial->println("saving offsets"); compass.save_offsets(); return (0); } //------------------------------------------------------------------------------------------- // real sensors that have not been simulated yet go here int8_t Plane::test_airspeed(uint8_t argc, const Menu::arg *argv) { if (!airspeed.enabled()) { cliSerial->printf("airspeed: "); print_enabled(false); return (0); }else{ print_hit_enter(); zero_airspeed(false); cliSerial->printf("airspeed: "); print_enabled(true); while(1) { hal.scheduler->delay(20); read_airspeed(); cliSerial->printf("%.1f m/s\n", (double)airspeed.get_airspeed()); if(cliSerial->available() > 0) { return (0); } } } } int8_t Plane::test_pressure(uint8_t argc, const Menu::arg *argv) { cliSerial->printf("Uncalibrated relative airpressure\n"); print_hit_enter(); init_barometer(true); while(1) { hal.scheduler->delay(100); barometer.update(); if (!barometer.healthy()) { cliSerial->println("not healthy"); } else { cliSerial->printf("Alt: %0.2fm, Raw: %f Temperature: %.1f\n", (double)barometer.get_altitude(), (double)barometer.get_pressure(), (double)barometer.get_temperature()); } if(cliSerial->available() > 0) { return (0); } } } void Plane::print_enabled(bool b) { if (b) { cliSerial->printf("en"); } else { cliSerial->printf("dis"); } cliSerial->printf("abled\n"); } #endif // CLI_ENABLED