// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "AP_RangeFinder_LeddarOne.h" #include extern const AP_HAL::HAL& hal; /* The constructor also initialises the rangefinder. Note that this constructor is not called until detect() returns true, so we already know that we should setup the rangefinder */ AP_RangeFinder_LeddarOne::AP_RangeFinder_LeddarOne(RangeFinder &_ranger, uint8_t instance, RangeFinder::RangeFinder_State &_state, AP_SerialManager &serial_manager) : AP_RangeFinder_Backend(_ranger, instance, _state) { uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar, 0); if (uart != nullptr) { uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Lidar, 0)); } } /* detect if a LeddarOne rangefinder is connected. We'll detect by trying to take a reading on Serial. If we get a result the sensor is there. */ bool AP_RangeFinder_LeddarOne::detect(RangeFinder &_ranger, uint8_t instance, AP_SerialManager &serial_manager) { return serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar, 0) != nullptr; } // read - return last value measured by sensor bool AP_RangeFinder_LeddarOne::get_reading(uint16_t &reading_cm) { if (uart == nullptr) { return false; } // send a request message for Modbus function 4 if (send_request() != LEDDARONE_OK) { // TODO: handle LEDDARONE_ERR_SERIAL_PORT return false; } uint32_t start_ms = AP_HAL::millis(); while (!uart->available()) { // wait up to 200ms if (AP_HAL::millis() - start_ms > 200) { return false; } } // parse a response message, set number_detections, detections and sum_distance // must be signed to handle errors uint8_t number_detections; if (parse_response(number_detections) != LEDDARONE_OK) { // TODO: when (not LEDDARONE_OK) handle LEDDARONE_ERR_ return false; } // calculate average distance reading_cm = sum_distance / number_detections; return true; } /* update the state of the sensor */ void AP_RangeFinder_LeddarOne::update(void) { if (get_reading(state.distance_cm)) { // update range_valid state based on distance measured last_reading_ms = AP_HAL::millis(); update_status(); } else if (AP_HAL::millis() - last_reading_ms > 200) { set_status(RangeFinder::RangeFinder_NoData); } } /* CRC16 CRC-16-IBM(x16+x15+x2+1) */ bool AP_RangeFinder_LeddarOne::CRC16(uint8_t *aBuffer, uint8_t aLength, bool aCheck) { uint16_t crc = 0xFFFF; for (uint32_t i=0; i> 1) ^ 0xA001; } else { crc >>= 1; } } } uint8_t lCRCLo = LOWBYTE(crc); uint8_t lCRCHi = HIGHBYTE(crc); if (aCheck) { return (aBuffer[aLength] == lCRCLo) && (aBuffer[aLength+1] == lCRCHi); } else { aBuffer[aLength] = lCRCLo; aBuffer[aLength+1] = lCRCHi; return true; } } /* send a request message to execute ModBus function 0x04 */ LeddarOne_Status AP_RangeFinder_LeddarOne::send_request(void) { uint8_t data_buffer[10] = {0}; uint8_t i = 0; uint32_t nbytes = uart->available(); // clear buffer while (nbytes-- > 0) { uart->read(); if (++i > 250) { return LEDDARONE_ERR_SERIAL_PORT; } } // Modbus read input register (function code 0x04) data_buffer[0] = LEDDARONE_DEFAULT_ADDRESS; data_buffer[1] = 0x04; data_buffer[2] = 0; data_buffer[3] = 20; data_buffer[4] = 0; data_buffer[5] = 10; // CRC16 CRC16(data_buffer, 6, false); // write buffer data with CRC16 bits for (i=0; i<8; i++) { uart->write(data_buffer[i]); } uart->flush(); return LEDDARONE_OK; } /* parse a response message from Modbus */ LeddarOne_Status AP_RangeFinder_LeddarOne::parse_response(uint8_t &number_detections) { uint8_t data_buffer[25] = {0}; uint32_t start_ms = AP_HAL::millis(); uint32_t len = 0; uint8_t i; uint8_t index_offset = 11; // read serial while (AP_HAL::millis() - start_ms < 10) { uint32_t nbytes = uart->available(); if (len == 25 && nbytes == 0) { break; } else { for (i=len; i= 25) { return LEDDARONE_ERR_BAD_RESPONSE; } data_buffer[i] = uart->read(); } start_ms = AP_HAL::millis(); len += nbytes; } } if (len != 25) { return LEDDARONE_ERR_BAD_RESPONSE; } // CRC16 if (!CRC16(data_buffer, len-2, true)) { return LEDDARONE_ERR_BAD_CRC; } // number of detections number_detections = data_buffer[10]; // if the number of detection is over or zero , it is false if (number_detections > LEDDARONE_DETECTIONS_MAX || number_detections == 0) { return LEDDARONE_ERR_NUMBER_DETECTIONS; } memset(detections, 0, sizeof(detections)); sum_distance = 0; for (i=0; i(data_buffer[index_offset])*256 + data_buffer[index_offset+1]) / 10; sum_distance += detections[i]; index_offset += 4; } return LEDDARONE_OK; }