// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Tracker.h" // mission storage static const StorageAccess wp_storage(StorageManager::StorageMission); static void mavlink_snoop_static(const mavlink_message_t* msg) { return tracker.mavlink_snoop(msg); } static void mavlink_delay_cb_static() { tracker.mavlink_delay_cb(); } void Tracker::init_tracker() { // initialise console serial port serial_manager.init_console(); hal.console->printf_P(PSTR("\n\nInit " THISFIRMWARE "\n\nFree RAM: %u\n"), hal.util->available_memory()); // Check the EEPROM format version before loading any parameters from EEPROM load_parameters(); BoardConfig.init(); // initialise serial ports serial_manager.init(); // init baro before we start the GCS, so that the CLI baro test works barometer.init(); // init the GCS and start snooping for vehicle data gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0); gcs[0].set_snoop(mavlink_snoop_static); // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. usb_connected = true; check_usb_mux(); // setup serial port for telem1 and start snooping for vehicle data gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0); gcs[1].set_snoop(mavlink_snoop_static); #if MAVLINK_COMM_NUM_BUFFERS > 2 // setup serial port for telem2 and start snooping for vehicle data gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1); gcs[2].set_snoop(mavlink_snoop_static); #endif #if MAVLINK_COMM_NUM_BUFFERS > 3 // setup serial port for fourth telemetry port (not used by default) and start snooping for vehicle data gcs[3].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 2); gcs[3].set_snoop(mavlink_snoop_static); #endif mavlink_system.sysid = g.sysid_this_mav; if (g.compass_enabled==true) { if (!compass.init() || !compass.read()) { hal.console->println_P(PSTR("Compass initialisation failed!")); g.compass_enabled = false; } else { ahrs.set_compass(&compass); } } // GPS Initialization gps.init(NULL, serial_manager); ahrs.init(); ahrs.set_fly_forward(false); ins.init(AP_InertialSensor::WARM_START, ins_sample_rate); ahrs.reset(); init_barometer(); // set serial ports non-blocking serial_manager.set_blocking_writes_all(false); // initialise servos init_servos(); // use given start positions - useful for indoor testing, and // while waiting for GPS lock current_loc.lat = g.start_latitude * 1.0e7f; current_loc.lng = g.start_longitude * 1.0e7f; // see if EEPROM has a default location as well if (current_loc.lat == 0 && current_loc.lng == 0) { get_home_eeprom(current_loc); } gcs_send_text_P(SEVERITY_LOW,PSTR("\nReady to track.")); hal.scheduler->delay(1000); // Why???? set_mode(AUTO); // tracking if (g.startup_delay > 0) { // arm servos with trim value to allow them to start up (required // for some servos) prepare_servos(); } // calibrate pressure on startup by default nav_status.need_altitude_calibration = true; } // updates the status of the notify objects // should be called at 50hz void Tracker::update_notify() { notify.update(); } /* fetch HOME from EEPROM */ bool Tracker::get_home_eeprom(struct Location &loc) { // Find out proper location in memory by using the start_byte position + the index // -------------------------------------------------------------------------------- if (g.command_total.get() == 0) { return false; } // read WP position loc.options = wp_storage.read_byte(0); loc.alt = wp_storage.read_uint32(1); loc.lat = wp_storage.read_uint32(5); loc.lng = wp_storage.read_uint32(9); return true; } void Tracker::set_home_eeprom(struct Location temp) { wp_storage.write_byte(0, temp.options); wp_storage.write_uint32(1, temp.alt); wp_storage.write_uint32(5, temp.lat); wp_storage.write_uint32(9, temp.lng); // Now have a home location in EEPROM g.command_total.set_and_save(1); // At most 1 entry for HOME } void Tracker::set_home(struct Location temp) { set_home_eeprom(temp); current_loc = temp; } void Tracker::arm_servos() { channel_yaw.enable_out(); channel_pitch.enable_out(); } void Tracker::disarm_servos() { channel_yaw.disable_out(); channel_pitch.disable_out(); } /* setup servos to trim value after initialising */ void Tracker::prepare_servos() { start_time_ms = hal.scheduler->millis(); channel_yaw.radio_out = channel_yaw.radio_trim; channel_pitch.radio_out = channel_pitch.radio_trim; channel_yaw.output(); channel_pitch.output(); } void Tracker::set_mode(enum ControlMode mode) { if(control_mode == mode) { // don't switch modes if we are already in the correct mode. return; } control_mode = mode; switch (control_mode) { case AUTO: case MANUAL: case SCAN: case SERVO_TEST: arm_servos(); break; case STOP: case INITIALISING: disarm_servos(); break; } } /* set_mode() wrapper for MAVLink SET_MODE */ bool Tracker::mavlink_set_mode(uint8_t mode) { switch (mode) { case AUTO: case MANUAL: case SCAN: case SERVO_TEST: case STOP: set_mode((enum ControlMode)mode); return true; } return false; } void Tracker::check_usb_mux(void) { bool usb_check = hal.gpio->usb_connected(); if (usb_check == usb_connected) { return; } // the user has switched to/from the telemetry port usb_connected = usb_check; #if CONFIG_HAL_BOARD == HAL_BOARD_APM2 // the APM2 has a MUX setup where the first serial port switches // between USB and a TTL serial connection. When on USB we use // SERIAL0_BAUD, but when connected as a TTL serial port we run it // at SERIAL1_BAUD. if (usb_connected) { serial_manager.set_console_baud(AP_SerialManager::SerialProtocol_Console, 0); } else { serial_manager.set_console_baud(AP_SerialManager::SerialProtocol_MAVLink, 0); } #endif }