// This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see . #include #include #include #include #include #include #include //Comment/uncomment the #includes statements depending on your BeagleBone version: //#include "RcAioPRU_POCKET_bin.h" //#include "RcAioPRU_BBBMINI_bin.h" #include "RcAioPRU_BBBLUE_bin.h" #define NUM_RING_ENTRIES 300 #define RCOUT_PRUSS_RAM_BASE 0x4a302000 #define RCOUT_PRUSS_CTRL_BASE 0x4a324000 #define RCOUT_PRUSS_IRAM_BASE 0x4a338000 #define RCIN_PRUSS_RAM_BASE 0x4a303000 #define ARRAY_SIZE(_arr) (sizeof(_arr) / sizeof(_arr[0])) #define PWM_FREQ 50 struct ring_buffer { volatile uint16_t ring_head; volatile uint16_t ring_tail; struct { volatile uint32_t s1; volatile uint32_t s0; } buffer[NUM_RING_ENTRIES]; }; struct pwm { volatile uint32_t enable; volatile uint32_t ch1_hi_time; volatile uint32_t ch1_t_time; volatile uint32_t ch2_hi_time; volatile uint32_t ch2_t_time; volatile uint32_t ch3_hi_time; volatile uint32_t ch3_t_time; volatile uint32_t ch4_hi_time; volatile uint32_t ch4_t_time; volatile uint32_t ch5_hi_time; volatile uint32_t ch5_t_time; volatile uint32_t ch6_hi_time; volatile uint32_t ch6_t_time; volatile uint32_t ch7_hi_time; volatile uint32_t ch7_t_time; volatile uint32_t ch8_hi_time; volatile uint32_t ch8_t_time; volatile uint32_t ch9_hi_time; volatile uint32_t ch9_t_time; volatile uint32_t ch10_hi_time; volatile uint32_t ch10_t_time; volatile uint32_t ch11_hi_time; volatile uint32_t ch11_t_time; volatile uint32_t ch12_hi_time; volatile uint32_t ch12_t_time; volatile uint32_t time; volatile uint32_t max_cycle_time; }; volatile struct ring_buffer *ring_buffer; volatile struct pwm *pwm; static const uint32_t TICK_PER_US = 200; static const uint32_t TICK_PER_S = 200000000; static const uint32_t TICK_DURATION_NS = 5; int main (void) { unsigned int ret, s0, s1, min_s0 = 0xffffffff, min_s1 = 0xffffffff, max_s0 = 0, max_s1 = 0; uint32_t mem_fd = open("/dev/mem", O_RDWR|O_SYNC|O_CLOEXEC); ring_buffer = (struct ring_buffer*) mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCIN_PRUSS_RAM_BASE); pwm = (struct pwm*) mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_RAM_BASE); uint32_t *iram = (uint32_t*)mmap(0, 0x2000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_IRAM_BASE); uint32_t *ctrl = (uint32_t*)mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, RCOUT_PRUSS_CTRL_BASE); uint64_t time_ns; close(mem_fd); // This loop checks that the IEP counter is really started. If not, the PRU is reset, the program is reload and PRU restarted // To report pwm->time and pwm->max_cycle_time, the PRU program must be compiled with -DDEBUG option, for example: // pasm -V3 -c RcAioPRU.p RcAioPRU_BBBLUE -DBBBLUE -DDEBUG // This is made for you by 'make debug' followed by 'make test' do { printf("The PRU will be reset\n"); // Reset PRU 1 *ctrl = 0; //You might uncomment this to identify more easily where the program ends in the IRAM //memset(iram, '\0', sizeof(PRUcode) + 128); // Load firmware memcpy(iram, PRUcode, sizeof(PRUcode)); // Start PRU 1 *ctrl |= 2; pwm->ch1_t_time = TICK_PER_S / PWM_FREQ; pwm->ch2_t_time = TICK_PER_S / PWM_FREQ; pwm->ch3_t_time = TICK_PER_S / PWM_FREQ; pwm->ch4_t_time = TICK_PER_S / PWM_FREQ; pwm->ch5_t_time = TICK_PER_S / PWM_FREQ; pwm->ch6_t_time = TICK_PER_S / PWM_FREQ; pwm->ch7_t_time = TICK_PER_S / PWM_FREQ; pwm->ch8_t_time = TICK_PER_S / PWM_FREQ; pwm->ch9_t_time = TICK_PER_S / PWM_FREQ; pwm->ch10_t_time = TICK_PER_S / PWM_FREQ; pwm->ch11_t_time = TICK_PER_S / PWM_FREQ; pwm->ch12_t_time = TICK_PER_S / PWM_FREQ; pwm->enable=0xffffffff; printf("IEP counter: 0x%08x\n", pwm->time); } while (pwm->time == 0xffffffff); while(1) { for(unsigned int a = 0; a < NUM_RING_ENTRIES; a++) { s0 = ring_buffer->buffer[a].s0; s1 = ring_buffer->buffer[a].s1; if(s0 > max_s0) {max_s0 = s0;} if(s1 > max_s1) {max_s1 = s1;} if(s0 < min_s0) {min_s0 = s0;} if(s1 < min_s1) {min_s1 = s1;} } s0 = ring_buffer->buffer[ring_buffer->ring_tail].s0; s1 = ring_buffer->buffer[ring_buffer->ring_tail].s1; time_ns = ((double)pwm->time) * ((double)TICK_DURATION_NS); printf("max ct: %3u cycles time: %11lluns head: %u tail: %3u s0: %7u s1: %7u s01: %7u jitter_s0: %uns jitter_s1: %uns\n", pwm->max_cycle_time, time_ns, ring_buffer->ring_head, ring_buffer->ring_tail, s0 * TICK_DURATION_NS, s1 * TICK_DURATION_NS, (s0+s1) * TICK_DURATION_NS, ((max_s0-min_s0) * TICK_DURATION_NS), ((max_s1-min_s1) * TICK_DURATION_NS)); // uint32_t value = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US); // pwm->ch1_hi_time = value; // pwm->ch2_hi_time = value; //pwm->ch1_hi_time = 1500 * TICK_PER_US; pwm->ch1_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US); pwm->ch2_hi_time = 1500 * TICK_PER_US; pwm->ch3_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US); pwm->ch4_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US); pwm->ch5_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US); pwm->ch6_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US); pwm->ch7_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US); pwm->ch8_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US); pwm->ch9_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US); pwm->ch10_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US); pwm->ch11_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US); pwm->ch12_hi_time = (uint32_t)((rand() % 1001 + 900) * TICK_PER_US); usleep(1000000); min_s0 = 0xffffffff; min_s1 = 0xffffffff; max_s0 = 0; max_s1 = 0; } return 0; }