#pragma once /// @file AC_P_2D.h /// @brief 2-axis P controller with EEPROM-backed storage of constants. #include #include /// @class AC_P_2D /// @brief 2-axis P controller class AC_P_2D { public: // constructor AC_P_2D(float initial_p, float dt); CLASS_NO_COPY(AC_P_2D); // set time step in seconds void set_dt(float dt) { _dt = dt; } // set target and measured inputs to P controller and calculate outputs Vector2f update_all(float &target_x, float &target_y, const Vector2f &measurement, bool &limit) WARN_IF_UNUSED; // set target and measured inputs to P controller and calculate outputs // measurement is provided as 3-axis vector but only x and y are used Vector2f update_all(float &target_x, float &target_y, const Vector3f &measurement, bool &limit) WARN_IF_UNUSED { return update_all(target_x, target_y, Vector2f{measurement.x, measurement.y}, limit); } // set_limits - sets the maximum error to limit output and first and second derivative of output void set_limits(float output_max, float D_Out_max = 0.0f, float D2_Out_max = 0.0f); // set_error_max - reduce maximum position error to error_max // to be called after setting limits void set_error_max(float error_max); // get_error_max - return maximum position error float get_error_max() { return _error_max; } // save gain to eeprom void save_gains() { _kp.save(); } // get accessors AP_Float &kP() WARN_IF_UNUSED { return _kp; } const AP_Float &kP() const WARN_IF_UNUSED { return _kp; } const Vector2f& get_error() const { return _error; } // set accessors void kP(float v) { _kp.set(v); } // parameter var table static const struct AP_Param::GroupInfo var_info[]; private: // parameters AP_Float _kp; // internal variables float _dt; // time step in seconds Vector2f _error; // time step in seconds float _error_max; // error limit in positive direction float _D1_max; // maximum first derivative of output };