// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if LOGGING_ENABLED == ENABLED // Code to Write and Read packets from DataFlash log memory // Code to interact with the user to dump or erase logs #define HEAD_BYTE1 0xA3 // Decimal 163 #define HEAD_BYTE2 0x95 // Decimal 149 #define END_BYTE 0xBA // Decimal 186 // These are function definitions so the Menu can be constructed before the functions // are defined below. Order matters to the compiler. static bool print_log_menu(void); static int8_t dump_log(uint8_t argc, const Menu::arg *argv); static int8_t erase_logs(uint8_t argc, const Menu::arg *argv); static int8_t select_logs(uint8_t argc, const Menu::arg *argv); // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of print_f that reads from flash memory //static int8_t help_log(uint8_t argc, const Menu::arg *argv) /*{ Serial.printf_P(PSTR("\n" "Commands:\n" " dump " " erase (all logs)\n" " enable | all\n" " disable | all\n" "\n")); return 0; }*/ // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details const struct Menu::command log_menu_commands[] PROGMEM = { {"dump", dump_log}, {"erase", erase_logs}, {"enable", select_logs}, {"disable", select_logs} }; static int32_t get_int(float f) { float_int.float_value = f; return float_int.int_value; } static float get_float(int32_t i) { float_int.int_value = i; return float_int.float_value; } // A Macro to create the Menu MENU2(log_menu, "Log", log_menu_commands, print_log_menu); static bool print_log_menu(void) { int16_t log_start; int16_t log_end; int16_t temp; int16_t last_log_num = DataFlash.find_last_log(); uint16_t num_logs = DataFlash.get_num_logs(); Serial.printf_P(PSTR("logs enabled: ")); if (0 == g.log_bitmask) { Serial.printf_P(PSTR("none")); }else{ if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) Serial.printf_P(PSTR(" ATTITUDE_FAST")); if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) Serial.printf_P(PSTR(" ATTITUDE_MED")); if (g.log_bitmask & MASK_LOG_GPS) Serial.printf_P(PSTR(" GPS")); if (g.log_bitmask & MASK_LOG_PM) Serial.printf_P(PSTR(" PM")); if (g.log_bitmask & MASK_LOG_CTUN) Serial.printf_P(PSTR(" CTUN")); if (g.log_bitmask & MASK_LOG_NTUN) Serial.printf_P(PSTR(" NTUN")); if (g.log_bitmask & MASK_LOG_RAW) Serial.printf_P(PSTR(" RAW")); if (g.log_bitmask & MASK_LOG_CMD) Serial.printf_P(PSTR(" CMD")); if (g.log_bitmask & MASK_LOG_CUR) Serial.printf_P(PSTR(" CURRENT")); if (g.log_bitmask & MASK_LOG_MOTORS) Serial.printf_P(PSTR(" MOTORS")); if (g.log_bitmask & MASK_LOG_OPTFLOW) Serial.printf_P(PSTR(" OPTFLOW")); if (g.log_bitmask & MASK_LOG_PID) Serial.printf_P(PSTR(" PID")); } Serial.println(); if (num_logs == 0) { Serial.printf_P(PSTR("\nNo logs\n\n")); }else{ Serial.printf_P(PSTR("\n%u logs\n"), (unsigned)num_logs); for(int16_t i=num_logs;i>=1;i--) { int16_t last_log_start = log_start, last_log_end = log_end; temp = last_log_num-i+1; DataFlash.get_log_boundaries(temp, log_start, log_end); Serial.printf_P(PSTR("Log %d, start %d, end %d\n"), temp, log_start, log_end); if (last_log_start == log_start && last_log_end == log_end) { // we are printing bogus logs break; } } Serial.println(); } return(true); } static int8_t dump_log(uint8_t argc, const Menu::arg *argv) { int16_t dump_log; int16_t dump_log_start; int16_t dump_log_end; byte last_log_num; // check that the requested log number can be read dump_log = argv[1].i; last_log_num = DataFlash.find_last_log(); if (dump_log == -2) { for(uint16_t count=1; count<=DataFlash.df_NumPages; count++) { DataFlash.StartRead(count); Serial.printf_P(PSTR("DF page, log file #, log page: %d,\t"), count); Serial.printf_P(PSTR("%d,\t"), DataFlash.GetFileNumber()); Serial.printf_P(PSTR("%d\n"), DataFlash.GetFilePage()); } return(-1); } else if (dump_log <= 0) { Serial.printf_P(PSTR("dumping all\n")); Log_Read(1, DataFlash.df_NumPages); return(-1); } else if ((argc != 2) || (dump_log <= (last_log_num - DataFlash.get_num_logs())) || (dump_log > last_log_num)) { Serial.printf_P(PSTR("bad log number\n")); return(-1); } DataFlash.get_log_boundaries(dump_log, dump_log_start, dump_log_end); /*Serial.printf_P(PSTR("Dumping Log number %d, start %d, end %d\n"), dump_log, dump_log_start, dump_log_end); */ Log_Read(dump_log_start, dump_log_end); //Serial.printf_P(PSTR("Done\n")); return (0); } static void do_erase_logs(void) { gcs_send_text_P(SEVERITY_LOW, PSTR("Erasing logs")); DataFlash.EraseAll(mavlink_delay); gcs_send_text_P(SEVERITY_LOW, PSTR("Log erase complete")); } static int8_t erase_logs(uint8_t argc, const Menu::arg *argv) { in_mavlink_delay = true; do_erase_logs(); in_mavlink_delay = false; return 0; } static int8_t select_logs(uint8_t argc, const Menu::arg *argv) { uint16_t bits; if (argc != 2) { Serial.printf_P(PSTR("missing log type\n")); return(-1); } bits = 0; // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // that name as the argument to the command, and set the bit in // bits accordingly. // if (!strcasecmp_P(argv[1].str, PSTR("all"))) { bits = ~0; } else { #define TARG(_s) if (!strcasecmp_P(argv[1].str, PSTR(#_s))) bits |= MASK_LOG_ ## _s TARG(ATTITUDE_FAST); TARG(ATTITUDE_MED); TARG(GPS); TARG(PM); TARG(CTUN); TARG(NTUN); TARG(MODE); TARG(RAW); TARG(CMD); TARG(CUR); TARG(MOTORS); TARG(OPTFLOW); TARG(PID); #undef TARG } if (!strcasecmp_P(argv[0].str, PSTR("enable"))) { g.log_bitmask.set_and_save(g.log_bitmask | bits); }else{ g.log_bitmask.set_and_save(g.log_bitmask & ~bits); } return(0); } static int8_t process_logs(uint8_t argc, const Menu::arg *argv) { log_menu.run(); return 0; } // print_latlon - prints an latitude or longitude value held in an int32_t // probably this should be moved to AP_Common void print_latlon(BetterStream *s, int32_t lat_or_lon) { int32_t dec_portion, frac_portion; int32_t abs_lat_or_lon = labs(lat_or_lon); // extract decimal portion (special handling of negative numbers to ensure we round towards zero) dec_portion = abs_lat_or_lon / T7; // extract fractional portion frac_portion = abs_lat_or_lon - dec_portion*T7; // print output including the minus sign if( lat_or_lon < 0 ) { s->printf_P(PSTR("-")); } s->printf_P(PSTR("%ld.%07ld"),(long)dec_portion,(long)frac_portion); } // Write an GPS packet. Total length : 31 bytes static void Log_Write_GPS() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_GPS_MSG); DataFlash.WriteLong(g_gps->time); // 1 DataFlash.WriteByte(g_gps->num_sats); // 2 DataFlash.WriteLong(current_loc.lat); // 3 DataFlash.WriteLong(current_loc.lng); // 4 DataFlash.WriteLong(current_loc.alt); // 5 DataFlash.WriteLong(g_gps->altitude); // 6 DataFlash.WriteInt(g_gps->ground_speed); // 7 DataFlash.WriteLong(g_gps->ground_course); // 8 DataFlash.WriteByte(END_BYTE); } // Read a GPS packet static void Log_Read_GPS() { int32_t temp1 = DataFlash.ReadLong(); // 1 time int8_t temp2 = DataFlash.ReadByte(); // 2 sats int32_t temp3 = DataFlash.ReadLong(); // 3 lat int32_t temp4 = DataFlash.ReadLong(); // 4 lon float temp5 = DataFlash.ReadLong() / 100.0; // 5 sensor alt float temp6 = DataFlash.ReadLong() / 100.0; // 6 gps alt int16_t temp7 = DataFlash.ReadInt(); // 7 ground speed int32_t temp8 = DataFlash.ReadLong(); // 8 ground course // 1 2 3 4 5 6 7 8 Serial.printf_P(PSTR("GPS, %ld, %d, "), temp1, // 1 time temp2); // 2 sats print_latlon(&Serial, temp3); Serial.print_P(PSTR(", ")); print_latlon(&Serial, temp4); Serial.printf_P(PSTR(", %4.4f, %4.4f, %d, %ld\n"), temp5, // 5 gps alt temp6, // 6 sensor alt temp7, // 7 ground speed temp8); // 8 ground course } #if INERTIAL_NAV == ENABLED static void Log_Write_Raw() { Vector3f accel = imu.get_accel(); DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_RAW_MSG); DataFlash.WriteLong(get_int(accels_velocity.x)); DataFlash.WriteInt(x_actual_speed); DataFlash.WriteLong(get_int(accels_velocity.y)); DataFlash.WriteInt(y_actual_speed); DataFlash.WriteLong(get_int(accels_velocity.z)); DataFlash.WriteInt(climb_rate_actual); //DataFlash.WriteLong(get_int(accel.x)); //DataFlash.WriteLong(get_int(accel.y)); //DataFlash.WriteLong(get_int(accel.z)); DataFlash.WriteByte(END_BYTE); } // Read a raw accel/gyro packet static void Log_Read_Raw() { /* float logvar; Serial.printf_P(PSTR("RAW,")); for (int16_t y = 0; y < 9; y++) { logvar = get_float(DataFlash.ReadLong()); Serial.print(logvar); Serial.print(", "); } Serial.println(" "); */ float vx = get_float(DataFlash.ReadLong()); int16_t sx = DataFlash.ReadInt(); float vy = get_float(DataFlash.ReadLong()); int16_t sy = DataFlash.ReadInt(); float vz = get_float(DataFlash.ReadLong()); int16_t sz = DataFlash.ReadInt(); Serial.printf_P(PSTR("RAW, %1.4f, %d, %1.4f, %d, %1.4f, %d\n"), vx, sx, vy, sy, vz, sz); } #else static void Log_Write_Raw() { Vector3f gyro = imu.get_gyro(); Vector3f accel = imu.get_accel(); DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_RAW_MSG); DataFlash.WriteLong(get_int(gyro.x)); DataFlash.WriteLong(get_int(gyro.y)); DataFlash.WriteLong(get_int(gyro.z)); DataFlash.WriteLong(get_int(accel.x)); DataFlash.WriteLong(get_int(accel.y)); DataFlash.WriteLong(get_int(accel.z)); DataFlash.WriteByte(END_BYTE); } // Read a raw accel/gyro packet static void Log_Read_Raw() { float logvar; Serial.printf_P(PSTR("RAW,")); for (int16_t y = 0; y < 6; y++) { logvar = get_float(DataFlash.ReadLong()); Serial.print(logvar); Serial.print(", "); } Serial.println(" "); } #endif // Write an Current data packet. Total length : 16 bytes static void Log_Write_Current() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_CURRENT_MSG); DataFlash.WriteInt(g.rc_3.control_in); // 1 DataFlash.WriteLong(throttle_integrator); // 2 DataFlash.WriteInt(battery_voltage1 * 100.0); // 3 DataFlash.WriteInt(current_amps1 * 100.0); // 4 DataFlash.WriteInt(current_total1); // 5 DataFlash.WriteByte(END_BYTE); } // Read a Current packet static void Log_Read_Current() { int16_t temp1 = DataFlash.ReadInt(); // 1 int32_t temp2 = DataFlash.ReadLong(); // 2 float temp3 = DataFlash.ReadInt() / 100.f; // 3 float temp4 = DataFlash.ReadInt() / 100.f; // 4 int16_t temp5 = DataFlash.ReadInt(); // 5 // 1 2 3 4 5 Serial.printf_P(PSTR("CURR, %d, %ld, %4.4f, %4.4f, %d\n"), temp1, temp2, temp3, temp4, temp5); } // Write an Motors packet. Total length : 12 ~ 20 bytes static void Log_Write_Motors() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_MOTORS_MSG); #if FRAME_CONFIG == TRI_FRAME DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_1]);//1 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_2]);//2 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_4]);//3 DataFlash.WriteInt(g.rc_4.radio_out);//4 #elif FRAME_CONFIG == HEXA_FRAME DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_1]);//1 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_2]);//2 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_3]);//3 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_4]);//4 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_5]);//5 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_6]);//6 #elif FRAME_CONFIG == Y6_FRAME //left DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_2]);//1 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_3]);//2 //right DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_5]);//3 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_1]);//4 //back DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_6]);//5 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_4]);//6 #elif FRAME_CONFIG == OCTA_FRAME || FRAME_CONFIG == OCTA_QUAD_FRAME DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_1]);//1 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_2]);//2 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_3]);//3 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_4]);//4 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_5]);//5 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_6]); //6 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_7]);//7 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_8]);//8 #elif FRAME_CONFIG == HELI_FRAME DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_1]);//1 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_2]);//2 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_3]);//3 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_4]);//4 DataFlash.WriteInt(motors.ext_gyro_gain);//5 #else // quads DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_1]);//1 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_2]);//2 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_3]);//3 DataFlash.WriteInt(motors.motor_out[AP_MOTORS_MOT_4]);//4 #endif DataFlash.WriteByte(END_BYTE); } // Read a Motors packet. static void Log_Read_Motors() { #if FRAME_CONFIG == HEXA_FRAME || FRAME_CONFIG == Y6_FRAME int16_t temp1 = DataFlash.ReadInt(); // 1 int16_t temp2 = DataFlash.ReadInt(); // 2 int16_t temp3 = DataFlash.ReadInt(); // 3 int16_t temp4 = DataFlash.ReadInt(); // 4 int16_t temp5 = DataFlash.ReadInt(); // 5 int16_t temp6 = DataFlash.ReadInt(); // 6 // 1 2 3 4 5 6 Serial.printf_P(PSTR("MOT, %d, %d, %d, %d, %d, %d\n"), temp1, //1 temp2, //2 temp3, //3 temp4, //4 temp5, //5 temp6); //6 #elif FRAME_CONFIG == OCTA_FRAME || FRAME_CONFIG == OCTA_QUAD_FRAME int16_t temp1 = DataFlash.ReadInt(); // 1 int16_t temp2 = DataFlash.ReadInt(); // 2 int16_t temp3 = DataFlash.ReadInt(); // 3 int16_t temp4 = DataFlash.ReadInt(); // 4 int16_t temp5 = DataFlash.ReadInt(); // 5 int16_t temp6 = DataFlash.ReadInt(); // 6 int16_t temp7 = DataFlash.ReadInt(); // 7 int16_t temp8 = DataFlash.ReadInt(); // 8 // 1 2 3 4 5 6 7 8 Serial.printf_P(PSTR("MOT, %d, %d, %d, %d, %d, %d, %d, %d\n"), temp1, //1 temp2, //2 temp3, //3 temp4, //4 temp5, //5 temp6, //6 temp7, //7 temp8); //8 #elif FRAME_CONFIG == HELI_FRAME int16_t temp1 = DataFlash.ReadInt(); // 1 int16_t temp2 = DataFlash.ReadInt(); // 2 int16_t temp3 = DataFlash.ReadInt(); // 3 int16_t temp4 = DataFlash.ReadInt(); // 4 int16_t temp5 = DataFlash.ReadInt(); // 5 // 1 2 3 4 5 Serial.printf_P(PSTR("MOT, %d, %d, %d, %d, %d\n"), temp1, //1 temp2, //2 temp3, //3 temp4, //4 temp5); //5 #else // quads, TRIs int16_t temp1 = DataFlash.ReadInt(); // 1 int16_t temp2 = DataFlash.ReadInt(); // 2 int16_t temp3 = DataFlash.ReadInt(); // 3 int16_t temp4 = DataFlash.ReadInt(); // 4 // 1 2 3 4 Serial.printf_P(PSTR("MOT, %d, %d, %d, %d\n"), temp1, //1 temp2, //2 temp3, //3 temp4); //4; #endif } // Write an optical flow packet. Total length : 30 bytes static void Log_Write_Optflow() { #ifdef OPTFLOW_ENABLED DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_OPTFLOW_MSG); DataFlash.WriteInt((int)optflow.dx); DataFlash.WriteInt((int)optflow.dy); DataFlash.WriteInt((int)optflow.surface_quality); DataFlash.WriteInt((int)optflow.x_cm); DataFlash.WriteInt((int)optflow.y_cm); DataFlash.WriteLong(optflow.vlat);//optflow_offset.lat + optflow.lat); DataFlash.WriteLong(optflow.vlon);//optflow_offset.lng + optflow.lng); DataFlash.WriteLong(of_roll); DataFlash.WriteLong(of_pitch); DataFlash.WriteByte(END_BYTE); #endif } // Read an optical flow packet. static void Log_Read_Optflow() { #ifdef OPTFLOW_ENABLED int16_t temp1 = DataFlash.ReadInt(); // 1 int16_t temp2 = DataFlash.ReadInt(); // 2 int16_t temp3 = DataFlash.ReadInt(); // 3 int16_t temp4 = DataFlash.ReadInt(); // 4 int16_t temp5 = DataFlash.ReadInt(); // 5 float temp6 = DataFlash.ReadLong(); // 6 float temp7 = DataFlash.ReadLong(); // 7 int32_t temp8 = DataFlash.ReadLong(); // 8 int32_t temp9 = DataFlash.ReadLong(); // 9 Serial.printf_P(PSTR("OF, %d, %d, %d, %d, %d, %4.7f, %4.7f, %d, %d\n"), temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9); #endif } // Write an Nav Tuning packet. Total length : 24 bytes static void Log_Write_Nav_Tuning() { //Matrix3f tempmat = dcm.get_dcm_matrix(); DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_NAV_TUNING_MSG); DataFlash.WriteInt(wp_distance); // 1 DataFlash.WriteInt(target_bearing/100); // 2 DataFlash.WriteInt(long_error); // 3 DataFlash.WriteInt(lat_error); // 4 DataFlash.WriteInt(nav_lon); // 5 DataFlash.WriteInt(nav_lat); // 6 DataFlash.WriteInt(x_actual_speed); // 7 DataFlash.WriteInt(y_actual_speed); // 8 DataFlash.WriteInt(g.pid_nav_lon.get_integrator()); // 9 DataFlash.WriteInt(g.pid_nav_lat.get_integrator()); // 10 /*DataFlash.WriteInt(wp_distance); // 1 DataFlash.WriteInt(nav_bearing/100); // 2 DataFlash.WriteInt(my_max_speed); // 3 DataFlash.WriteInt(long_error); // 4 DataFlash.WriteInt(x_actual_speed); // 5 DataFlash.WriteInt(target_x_rate); // 6 DataFlash.WriteInt(x_rate_error); // 7 DataFlash.WriteInt(nav_lon_p); // 8 DataFlash.WriteInt(g.pi_loiter_lon.get_integrator()); // 9 DataFlash.WriteInt(nav_lon); // 10 */ DataFlash.WriteByte(END_BYTE); } // Read a Nav Tuning packet. static void Log_Read_Nav_Tuning() { int16_t temp; Serial.printf_P(PSTR("NTUN, ")); for(int8_t i = 1; i < 10; i++ ){ temp = DataFlash.ReadInt(); Serial.printf("%d, ", temp); } // read 10 temp = DataFlash.ReadInt(); Serial.printf("%d\n", temp); } // Write a control tuning packet. Total length : 26 bytes static void Log_Write_Control_Tuning() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_CONTROL_TUNING_MSG); DataFlash.WriteInt(g.rc_3.control_in); // 1 DataFlash.WriteInt(sonar_alt); // 2 DataFlash.WriteInt(baro_alt); // 3 DataFlash.WriteInt(next_WP.alt); // 4 DataFlash.WriteInt(nav_throttle); // 5 DataFlash.WriteInt(angle_boost); // 6 DataFlash.WriteInt(climb_rate_actual); // 7 DataFlash.WriteInt(g.rc_3.servo_out); // 8 DataFlash.WriteInt(g.pi_alt_hold.get_integrator()); // 9 DataFlash.WriteInt(g.pid_throttle.get_integrator());// 10 DataFlash.WriteByte(END_BYTE); } // Read an control tuning packet static void Log_Read_Control_Tuning() { int16_t temp; Serial.printf_P(PSTR("CTUN, ")); for(uint8_t i = 1; i < 10; i++ ){ temp = DataFlash.ReadInt(); Serial.printf("%d, ", (int)temp); } // read 11 temp = DataFlash.ReadInt(); Serial.printf("%d\n", (int)temp); } // Write a performance monitoring packet. Total length : 9 bytes static void Log_Write_Performance() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_PERFORMANCE_MSG); DataFlash.WriteByte( imu.adc_constraints); //1 DataFlash.WriteByte( ahrs.renorm_range_count); //2 DataFlash.WriteByte( ahrs.renorm_blowup_count); //3 DataFlash.WriteByte( gps_fix_count); //4 DataFlash.WriteByte(END_BYTE); } // Read a performance packet static void Log_Read_Performance() { int8_t temp1 = DataFlash.ReadByte(); int8_t temp2 = DataFlash.ReadByte(); int8_t temp3 = DataFlash.ReadByte(); int8_t temp4 = DataFlash.ReadByte(); //1 2 3 4 Serial.printf_P(PSTR("PM, %d, %d, %d, %d\n"), (int)temp1, (int)temp2, (int)temp3, (int)temp4); } // Write a command processing packet. Total length : 21 bytes static void Log_Write_Cmd(byte num, struct Location *wp) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_CMD_MSG); DataFlash.WriteByte(g.command_total); // 1 DataFlash.WriteByte(num); // 2 DataFlash.WriteByte(wp->id); // 3 DataFlash.WriteByte(wp->options); // 4 DataFlash.WriteByte(wp->p1); // 5 DataFlash.WriteLong(wp->alt); // 6 DataFlash.WriteLong(wp->lat); // 7 DataFlash.WriteLong(wp->lng); // 8 DataFlash.WriteByte(END_BYTE); } //CMD, 3, 0, 16, 8, 1, 800, 340440192, -1180692736 // Read a command processing packet static void Log_Read_Cmd() { int8_t temp1 = DataFlash.ReadByte(); int8_t temp2 = DataFlash.ReadByte(); int8_t temp3 = DataFlash.ReadByte(); int8_t temp4 = DataFlash.ReadByte(); int8_t temp5 = DataFlash.ReadByte(); int32_t temp6 = DataFlash.ReadLong(); int32_t temp7 = DataFlash.ReadLong(); int32_t temp8 = DataFlash.ReadLong(); // 1 2 3 4 5 6 7 8 Serial.printf_P(PSTR( "CMD, %d, %d, %d, %d, %d, %ld, %ld, %ld\n"), temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8); } // Write an attitude packet. Total length : 16 bytes static void Log_Write_Attitude() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_ATTITUDE_MSG); DataFlash.WriteInt(g.rc_1.control_in); // 1 DataFlash.WriteInt((int)ahrs.roll_sensor); // 2 DataFlash.WriteInt(g.rc_2.control_in); // 3 DataFlash.WriteInt((int)ahrs.pitch_sensor); // 4 DataFlash.WriteInt(g.rc_4.control_in); // 5 DataFlash.WriteInt((uint16_t)ahrs.yaw_sensor); // 6 DataFlash.WriteInt(0); // 7 (this used to be compass.heading) DataFlash.WriteByte(END_BYTE); } // Read an attitude packet static void Log_Read_Attitude() { int16_t temp1 = DataFlash.ReadInt(); int16_t temp2 = DataFlash.ReadInt(); int16_t temp3 = DataFlash.ReadInt(); int16_t temp4 = DataFlash.ReadInt(); int16_t temp5 = DataFlash.ReadInt(); uint16_t temp6 = DataFlash.ReadInt(); uint16_t temp7 = DataFlash.ReadInt(); temp7 = wrap_360(temp7); // 1 2 3 4 5 6 7 Serial.printf_P(PSTR("ATT, %d, %d, %d, %d, %d, %u, %u\n"), (int)temp1, (int)temp2, (int)temp3, (int)temp4, (int)temp5, (unsigned int)temp6, (unsigned int)temp7); } // Write a mode packet. Total length : 7 bytes static void Log_Write_Mode(byte mode) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_MODE_MSG); DataFlash.WriteByte(mode); DataFlash.WriteInt(g.throttle_cruise); DataFlash.WriteByte(END_BYTE); } // Read a mode packet static void Log_Read_Mode() { Serial.printf_P(PSTR("MOD:")); Serial.print(flight_mode_strings[DataFlash.ReadByte()]); Serial.printf_P(PSTR(", %d\n"),DataFlash.ReadInt()); } // Write Startup packet. Total length : 4 bytes static void Log_Write_Startup() { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_STARTUP_MSG); DataFlash.WriteByte(END_BYTE); } // Read a startup packet static void Log_Read_Startup() { Serial.printf_P(PSTR("START UP\n")); } static void Log_Write_Data(int8_t _type, float _data) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_DATA_MSG); DataFlash.WriteByte(_type); DataFlash.WriteByte(1); DataFlash.WriteLong(get_int(_data)); DataFlash.WriteByte(END_BYTE); } static void Log_Write_Data(int8_t _type, int32_t _data) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_DATA_MSG); DataFlash.WriteByte(_type); DataFlash.WriteByte(0); DataFlash.WriteLong(_data); DataFlash.WriteByte(END_BYTE); } // Read a mode packet static void Log_Read_Data() { int8_t temp1 = DataFlash.ReadByte(); int8_t temp2 = DataFlash.ReadByte(); if(temp2 == 1){ float temp3 = get_float(DataFlash.ReadLong()); Serial.printf_P(PSTR("DATA: %d, %1.6f\n"), temp1, temp3); }else{ int32_t temp3 = DataFlash.ReadLong(); Serial.printf_P(PSTR("DATA: %d, %ld\n"), temp1, temp3); } } // Write an PID packet. Total length : 28 bytes static void Log_Write_PID(int8_t pid_id, int32_t error, int32_t p, int32_t i, int32_t d, int32_t output, float gain) { DataFlash.WriteByte(HEAD_BYTE1); DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(LOG_PID_MSG); DataFlash.WriteByte(pid_id); // 1 DataFlash.WriteLong(error); // 2 DataFlash.WriteLong(p); // 3 DataFlash.WriteLong(i); // 4 DataFlash.WriteLong(d); // 5 DataFlash.WriteLong(output); // 6 DataFlash.WriteLong(gain * 1000); // 7 DataFlash.WriteByte(END_BYTE); } // Read a PID packet static void Log_Read_PID() { int8_t temp1 = DataFlash.ReadByte(); // pid id int32_t temp2 = DataFlash.ReadLong(); // error int32_t temp3 = DataFlash.ReadLong(); // p int32_t temp4 = DataFlash.ReadLong(); // i int32_t temp5 = DataFlash.ReadLong(); // d int32_t temp6 = DataFlash.ReadLong(); // output float temp7 = DataFlash.ReadLong() / 1000.f; // gain // 1 2 3 4 5 6 7 Serial.printf_P(PSTR("PID-%d, %ld, %ld, %ld, %ld, %ld, %4.4f\n"), (int)temp1, // pid id (long)temp2, // error (long)temp3, // p (long)temp4, // i (long)temp5, // d (long)temp6, // output temp7); // gain } // Read the DataFlash log memory static void Log_Read(int16_t start_page, int16_t end_page) { int16_t packet_count = 0; #ifdef AIRFRAME_NAME Serial.printf_P(PSTR((AIRFRAME_NAME) #endif Serial.printf_P(PSTR("\n" THISFIRMWARE "\nFree RAM: %u\n"), memcheck_available_memory()); if(start_page > end_page){ packet_count = Log_Read_Process(start_page, DataFlash.df_NumPages); packet_count += Log_Read_Process(1, end_page); } else { packet_count = Log_Read_Process(start_page, end_page); } //Serial.printf_P(PSTR("Number of packets read: %d\n"), packet_count); } // Read the DataFlash log memory : Packet Parser static int16_t Log_Read_Process(int16_t start_page, int16_t end_page) { byte data; byte log_step = 0; int16_t page = start_page; int16_t packet_count = 0; DataFlash.StartRead(start_page); while (page < end_page && page != -1){ data = DataFlash.ReadByte(); // This is a state machine to read the packets switch(log_step){ case 0: if(data == HEAD_BYTE1) // Head byte 1 log_step++; break; case 1: if(data == HEAD_BYTE2) // Head byte 2 log_step++; else{ log_step = 0; Serial.println("."); } break; case 2: log_step = 0; switch(data){ case LOG_ATTITUDE_MSG: Log_Read_Attitude(); break; case LOG_MODE_MSG: Log_Read_Mode(); break; case LOG_CONTROL_TUNING_MSG: Log_Read_Control_Tuning(); break; case LOG_NAV_TUNING_MSG: Log_Read_Nav_Tuning(); break; case LOG_PERFORMANCE_MSG: Log_Read_Performance(); break; case LOG_RAW_MSG: Log_Read_Raw(); break; case LOG_CMD_MSG: Log_Read_Cmd(); break; case LOG_CURRENT_MSG: Log_Read_Current(); break; case LOG_STARTUP_MSG: Log_Read_Startup(); break; case LOG_MOTORS_MSG: Log_Read_Motors(); break; case LOG_OPTFLOW_MSG: Log_Read_Optflow(); break; case LOG_GPS_MSG: Log_Read_GPS(); break; case LOG_DATA_MSG: Log_Read_Data(); break; case LOG_PID_MSG: Log_Read_PID(); break; } break; case 3: if(data == END_BYTE){ packet_count++; }else{ Serial.printf_P(PSTR("Error Reading END_BYTE: %d\n"),data); } log_step = 0; // Restart sequence: new packet... break; } page = DataFlash.GetPage(); } return packet_count; } #else // LOGGING_ENABLED static void Log_Write_Startup() {} static void Log_Read_Startup() {} static void Log_Read(int16_t start_page, int16_t end_page) {} static void Log_Write_Cmd(byte num, struct Location *wp) {} static void Log_Write_Mode(byte mode) {} static void Log_Write_Raw() {} static void Log_Write_GPS() {} static void Log_Write_Current() {} static void Log_Write_Attitude() {} static void Log_Write_Data(int8_t _type, float _data){} static void Log_Write_Data(int8_t _type, int32_t _data){} static void Log_Write_Optflow() {} static void Log_Write_Nav_Tuning() {} static void Log_Write_Control_Tuning() {} static void Log_Write_Motors() {} static void Log_Write_Performance() {} static void Log_Write_PID() {} static int8_t process_logs(uint8_t argc, const Menu::arg *argv) { return 0; } #endif // LOGGING_DISABLED