/* AP_ADC_ADS7844.cpp - ADC ADS7844 Library for Ardupilot Mega Code by Jordi Muņoz and Jose Julio. DIYDrones.com Modified by John Ihlein 6/19/2010 to: 1)Prevent overflow of adc_counter when more than 8 samples collected between reads. Probably only an issue on initial read of ADC at program start. 2)Reorder analog read order as follows: p, q, r, ax, ay, az This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. External ADC ADS7844 is connected via Serial port 2 (in SPI mode) TXD2 = MOSI = pin PH1 RXD2 = MISO = pin PH0 XCK2 = SCK = pin PH2 Chip Select pin is PC4 (33) [PH6 (9)] We are using the 16 clocks per conversion timming to increase efficiency (fast) The sampling frequency is 400Hz (Timer2 overflow interrupt) So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so we have an 4x oversampling and averaging. Methods: Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt) Ch(ch_num) : Return the ADC channel value // HJI - Input definitions. USB connector assumed to be on the left, Rx and servo // connector pins to the rear. IMU shield components facing up. These are board // referenced sensor inputs, not device referenced. On Ardupilot Mega Hardware, oriented as described above: Chennel 0 : yaw rate, r Channel 1 : roll rate, p Channel 2 : pitch rate, q Channel 3 : x/y gyro temperature Channel 4 : x acceleration, aX Channel 5 : y acceleration, aY Channel 6 : z acceleration, aZ Channel 7 : Differential pressure sensor port */ extern "C" { // AVR LibC Includes #include #include #include "WConstants.h" } #include "AP_ADC_ADS7844.h" // Commands for reading ADC channels on ADS7844 static const unsigned char adc_cmd[9]= { 0x87, 0xC7, 0x97, 0xD7, 0xA7, 0xE7, 0xB7, 0xF7, 0x00 }; static volatile long adc_value[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; static volatile unsigned char adc_counter[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; static unsigned char ADC_SPI_transfer(unsigned char data) { /* Wait for empty transmit buffer */ while ( !( UCSR2A & (1<= 16) // To prevent overflow of adc_value { // adc_value[ch] /= 2; adc_counter[ch] /= 2; } adc_tmp = ADC_SPI_transfer(0)<<8; // Read first byte adc_tmp |= ADC_SPI_transfer(adc_cmd[ch+1]); // Read second byte and send next command adc_value[ch] += adc_tmp>>3; // Shift to 12 bits adc_counter[ch]++; // Number of samples } bit_set(PORTC,4); // Disable Chip Select (PIN PC4) //bit_clear(PORTL,6); // To test performance TCNT2 = 104; // 400 Hz } // Constructors //////////////////////////////////////////////////////////////// AP_ADC_ADS7844::AP_ADC_ADS7844() { } // Public Methods ////////////////////////////////////////////////////////////// void AP_ADC_ADS7844::Init(void) { unsigned char tmp; pinMode(ADC_CHIP_SELECT,OUTPUT); digitalWrite(ADC_CHIP_SELECT,HIGH); // Disable device (Chip select is active low) // Setup Serial Port2 in SPI mode UBRR2 = 0; DDRH |= (1<0) result = adc_value[ch_num]/adc_counter[ch_num]; else result = 0; adc_value[ch_num] = 0; // Initialize for next reading adc_counter[ch_num] = 0; sei(); return(result); }