/* * Copyright (C) 2014 Pavel Kirienko * * With modifications for Ardupilot CAN driver * Copyright (C) 2017 Eugene Shamaev */ #pragma once #include "AP_HAL_PX4.h" #include #include #include #include #include "bxcan.h" #include "AP_HAL/utility/RingBuffer.h" #if defined(GPIO_CAN2_RX) && defined(GPIO_CAN2_TX) #define CAN_STM32_NUM_IFACES 2 #else #define CAN_STM32_NUM_IFACES 1 #endif #define CAN_STM32_RX_QUEUE_SIZE 64 namespace PX4 { /** * Driver error codes. * These values can be returned from driver functions negated. */ static const int16_t ErrUnknown = 1000; ///< Reserved for future use static const int16_t ErrNotImplemented = 1001; ///< Feature not implemented static const int16_t ErrInvalidBitRate = 1002; ///< Bit rate not supported static const int16_t ErrLogic = 1003; ///< Internal logic error static const int16_t ErrUnsupportedFrame = 1004; ///< Frame not supported (e.g. RTR, CAN FD, etc) static const int16_t ErrMsrInakNotSet = 1005; ///< INAK bit of the MSR register is not 1 static const int16_t ErrMsrInakNotCleared = 1006; ///< INAK bit of the MSR register is not 0 static const int16_t ErrBitRateNotDetected = 1007; ///< Auto bit rate detection could not be finished static const int16_t ErrFilterNumConfigs = 1008; ///< Auto bit rate detection could not be finished /** * RX queue item. * The application shall not use this directly. */ struct CanRxItem { uint64_t utc_usec; uavcan::CanFrame frame; uavcan::CanIOFlags flags; CanRxItem() : utc_usec(0), flags(0) { } }; struct CriticalSectionLocker { const irqstate_t flags_; CriticalSectionLocker() : flags_(irqsave()) { } ~CriticalSectionLocker() { irqrestore(flags_); } }; namespace clock { uint64_t getUtcUSecFromCanInterrupt(); uavcan::MonotonicTime getMonotonic(); } class BusEvent: uavcan::Noncopyable { public: BusEvent(PX4CANManager& can_driver); ~BusEvent(); bool wait(uavcan::MonotonicDuration duration); static void signalFromCallOut(BusEvent *sem); void signalFromInterrupt(); sem_t _wait_semaphore; volatile uint16_t _signal; }; class PX4CAN: public AP_HAL::CAN { struct Timings { uint16_t prescaler; uint8_t sjw; uint8_t bs1; uint8_t bs2; Timings() : prescaler(0), sjw(0), bs1(0), bs2(0) { } }; struct TxItem { uavcan::MonotonicTime deadline; uavcan::CanFrame frame; bool pending; bool loopback; bool abort_on_error; TxItem() : pending(false), loopback(false), abort_on_error(false) { } }; enum { NumTxMailboxes = 3 }; enum { NumFilters = 14 }; static const uint32_t TSR_ABRQx[NumTxMailboxes]; ObjectBuffer rx_queue_; bxcan::CanType* const can_; uint64_t error_cnt_; uint32_t served_aborts_cnt_; BusEvent* update_event_; TxItem pending_tx_[NumTxMailboxes]; uint8_t peak_tx_mailbox_index_; const uint8_t self_index_; bool had_activity_; uint32_t bitrate_; int computeTimings(uint32_t target_bitrate, Timings& out_timings); virtual int16_t send(const uavcan::CanFrame& frame, uavcan::MonotonicTime tx_deadline, uavcan::CanIOFlags flags) override; virtual int16_t receive(uavcan::CanFrame& out_frame, uavcan::MonotonicTime& out_ts_monotonic, uavcan::UtcTime& out_ts_utc, uavcan::CanIOFlags& out_flags) override; virtual int16_t configureFilters(const uavcan::CanFilterConfig* filter_configs, uint16_t num_configs) override; virtual uint16_t getNumFilters() const override { return NumFilters; } void handleTxMailboxInterrupt(uint8_t mailbox_index, bool txok, uint64_t utc_usec); bool waitMsrINakBitStateChange(bool target_state); bool initialized_; public: enum { MaxRxQueueCapacity = 254 }; enum OperatingMode { NormalMode, SilentMode }; PX4CAN(bxcan::CanType* can, BusEvent* update_event, uint8_t self_index, uint8_t rx_queue_capacity) : rx_queue_(rx_queue_capacity), can_(can), error_cnt_(0), served_aborts_cnt_(0), update_event_( update_event), peak_tx_mailbox_index_(0), self_index_(self_index), had_activity_(false), bitrate_( 0), initialized_(false) { UAVCAN_ASSERT(self_index_ < CAN_STM32_NUM_IFACES); } /** * Initializes the hardware CAN controller. * Assumes: * - Iface clock is enabled * - Iface has been resetted via RCC * - Caller will configure NVIC by itself */ int init(const uint32_t bitrate, const OperatingMode mode); void set_update_event(BusEvent* update_event) { update_event_ = update_event; } void handleTxInterrupt(uint64_t utc_usec); void handleRxInterrupt(uint8_t fifo_index, uint64_t utc_usec); /** * This method is used to count errors and abort transmission on error if necessary. * This functionality used to be implemented in the SCE interrupt handler, but that approach was * generating too much processing overhead, especially on disconnected interfaces. * * Should be called from RX ISR, TX ISR, and select(); interrupts must be enabled. */ void pollErrorFlagsFromISR(); void discardTimedOutTxMailboxes(uavcan::MonotonicTime current_time); bool canAcceptNewTxFrame(const uavcan::CanFrame& frame) const; bool isRxBufferEmpty() const; /** * Total number of hardware failures and other kinds of errors (e.g. queue overruns). * May increase continuously if the interface is not connected to the bus. */ virtual uint64_t getErrorCount() const override; /** * Number of times the driver exercised library's requirement to abort transmission on first error. * This is an atomic read, it doesn't require a critical section. * See @ref uavcan::CanIOFlagAbortOnError. */ uint32_t getVoluntaryTxAbortCount() const { return served_aborts_cnt_; } /** * Returns the number of frames pending in the RX queue. * This is intended for debug use only. */ unsigned getRxQueueLength() const; /** * Whether this iface had at least one successful IO since the previous call of this method. * This is designed for use with iface activity LEDs. */ bool hadActivity(); /** * Peak number of TX mailboxes used concurrently since initialization. * Range is [1, 3]. * Value of 3 suggests that priority inversion could be taking place. */ uint8_t getPeakNumTxMailboxesUsed() const { return uint8_t(peak_tx_mailbox_index_ + 1); } bool begin(uint32_t bitrate) override; void end() override { } void reset() override; int32_t tx_pending() override; int32_t available() override; bool is_initialized() override; }; class PX4CANManager: public AP_HAL::CANManager { BusEvent update_event_; PX4CAN if0_; PX4CAN if1_; virtual int16_t select(uavcan::CanSelectMasks& inout_masks, const uavcan::CanFrame* (&pending_tx)[uavcan::MaxCanIfaces], uavcan::MonotonicTime blocking_deadline) override; void initOnce(uint8_t can_number); bool initialized_; PX4CAN* ifaces[CAN_STM32_NUM_IFACES]; uint8_t _ifaces_num; uint8_t _ifaces_out_to_in[CAN_STM32_NUM_IFACES]; AP_UAVCAN *p_uavcan; public: PX4CANManager(); /** * This function returns select masks indicating which interfaces are available for read/write. */ uavcan::CanSelectMasks makeSelectMasks(const uavcan::CanFrame* (&pending_tx)[uavcan::MaxCanIfaces]) const; /** * Whether there's at least one interface where receive() would return a frame. */ bool hasReadableInterfaces() const; /** * Returns zero if OK. * Returns negative value if failed (e.g. invalid bitrate). */ int init(const uint32_t bitrate, const PX4CAN::OperatingMode mode, uint8_t can_number); virtual PX4CAN* getIface(uint8_t iface_index) override; PX4CAN* getIface_out_to_in(uint8_t iface_index); virtual uint8_t getNumIfaces() const override { return _ifaces_num; } /** * Whether at least one iface had at least one successful IO since previous call of this method. * This is designed for use with iface activity LEDs. */ bool hadActivity(); bool begin(uint32_t bitrate, uint8_t can_number) override; bool is_initialized() override; void initialized(bool val) override; AP_UAVCAN *get_UAVCAN(void) override; void set_UAVCAN(AP_UAVCAN *uavcan) override; }; }