/* AP_OpticalFlow_ADNS3080.cpp - ADNS3080 OpticalFlow Library for Ardupilot Mega Code by Randy Mackay. DIYDrones.com This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. External ADNS3080 OpticalFlow is connected via Serial port 2 (in SPI mode) TXD2 = MOSI = pin PH1 RXD2 = MISO = pin PH0 XCK2 = SCK = pin PH2 Chip Select pin is PC4 (33) [PH6 (9)] We are using the 16 clocks per conversion timming to increase efficiency (fast) The sampling frequency is 400Hz (Timer2 overflow interrupt) So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so we have an 4x oversampling and averaging. Methods: Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt) Read() : Read latest values from OpticalFlow and store to x,y, surface_quality parameters */ #include "AP_OpticalFlow_ADNS3080.h" #include "WProgram.h" #include "../SPI/SPI.h" #define AP_SPI_TIMEOUT 1000 union NumericIntType { int intValue; unsigned int uintValue; byte byteValue[2]; }; // Constructors //////////////////////////////////////////////////////////////// AP_OpticalFlow_ADNS3080::AP_OpticalFlow_ADNS3080() { num_pixels = ADNS3080_PIXELS_X; field_of_view = AP_OPTICALFLOW_ADNS3080_08_FOV; scaler = AP_OPTICALFLOW_ADNS3080_SCALER; } // Public Methods ////////////////////////////////////////////////////////////// // init - initialise sensor // initCommAPI parameter controls whether SPI interface is initialised (set to false if other devices are on the SPI bus and have already initialised the interface) bool AP_OpticalFlow_ADNS3080::init(bool initCommAPI) { int retry = 0; pinMode(AP_SPI_DATAOUT,OUTPUT); pinMode(AP_SPI_DATAIN,INPUT); pinMode(AP_SPI_CLOCK,OUTPUT); pinMode(ADNS3080_CHIP_SELECT,OUTPUT); pinMode(ADNS3080_RESET,OUTPUT); digitalWrite(ADNS3080_CHIP_SELECT,HIGH); // disable device (Chip select is active low) // reset the device reset(); // start the SPI library: if( initCommAPI ) { SPI.begin(); } // check the sensor is functioning if( retry < 3 ) { if( read_register(ADNS3080_PRODUCT_ID) == 0x17 ) return true; else retry++; }else return false; } // // backup_spi_settings - checks current SPI settings (clock speed, etc), sets values to what we need // byte AP_OpticalFlow_ADNS3080::backup_spi_settings() { // store current spi values orig_spi_settings_spcr = SPCR & (DORD | CPOL | CPHA); orig_spi_settings_spsr = SPSR & SPI2X; // set the values that we need SPI.setBitOrder(MSBFIRST); SPI.setDataMode(SPI_MODE3); SPI.setClockDivider(SPI_CLOCK_DIV8); // sensor running at 2Mhz. this is it's maximum speed return orig_spi_settings_spcr; } // restore_spi_settings - restores SPI settings (clock speed, etc) to what their values were before the sensor used the bus byte AP_OpticalFlow_ADNS3080::restore_spi_settings() { byte temp; // restore SPSR temp = SPSR; temp &= ~SPI2X; temp |= orig_spi_settings_spsr; SPSR = temp; // restore SPCR temp = SPCR; temp &= ~(DORD | CPOL | CPHA); // zero out the important bits temp |= orig_spi_settings_spcr; // restore important bits SPCR = temp; return temp; } // Read a register from the sensor byte AP_OpticalFlow_ADNS3080::read_register(byte address) { byte result = 0, junk = 0; backup_spi_settings(); // take the chip select low to select the device digitalWrite(ADNS3080_CHIP_SELECT, LOW); // send the device the register you want to read: junk = SPI.transfer(address); // small delay delayMicroseconds(50); // send a value of 0 to read the first byte returned: result = SPI.transfer(0x00); // take the chip select high to de-select: digitalWrite(ADNS3080_CHIP_SELECT, HIGH); restore_spi_settings(); return result; } // write a value to one of the sensor's registers void AP_OpticalFlow_ADNS3080::write_register(byte address, byte value) { byte junk = 0; backup_spi_settings(); // take the chip select low to select the device digitalWrite(ADNS3080_CHIP_SELECT, LOW); // send register address junk = SPI.transfer(address | 0x80 ); // small delay delayMicroseconds(50); // send data junk = SPI.transfer(value); // take the chip select high to de-select: digitalWrite(ADNS3080_CHIP_SELECT, HIGH); restore_spi_settings(); } // reset sensor by holding a pin high (or is it low?) for 10us. void AP_OpticalFlow_ADNS3080::reset() { digitalWrite(ADNS3080_RESET,HIGH); // reset sensor delayMicroseconds(10); digitalWrite(ADNS3080_RESET,LOW); // return sensor to normal } // read latest values from sensor and fill in x,y and totals int AP_OpticalFlow_ADNS3080::read() { surface_quality = (unsigned int)read_register(ADNS3080_SQUAL); delayMicroseconds(50); // small delay // check for movement, update x,y values if( (read_register(ADNS3080_MOTION) & 0x80) != 0 ) { raw_dx = ((char)read_register(ADNS3080_DELTA_X)); delayMicroseconds(50); // small delay raw_dy = ((char)read_register(ADNS3080_DELTA_Y)); _motion = true; }else{ raw_dx = 0; raw_dy = 0; } last_update = millis(); apply_orientation_matrix(); return OPTICALFLOW_SUCCESS; } // get_led_always_on - returns true if LED is always on, false if only on when required bool AP_OpticalFlow_ADNS3080::get_led_always_on() { return ( (read_register(ADNS3080_CONFIGURATION_BITS) & 0x40) > 0 ); } // set_led_always_on - set parameter to true if you want LED always on, otherwise false for only when required void AP_OpticalFlow_ADNS3080::set_led_always_on( bool alwaysOn ) { byte regVal = read_register(ADNS3080_CONFIGURATION_BITS); regVal = regVal & 0xBf | (alwaysOn << 6); delayMicroseconds(50); // small delay write_register(ADNS3080_CONFIGURATION_BITS, regVal); } // returns resolution (either 400 or 1200 counts per inch) int AP_OpticalFlow_ADNS3080::get_resolution() { if( (read_register(ADNS3080_CONFIGURATION_BITS) & 0x10) == 0 ) return 400; else return 1200; } // set parameter to 400 or 1200 counts per inch void AP_OpticalFlow_ADNS3080::set_resolution(int resolution) { byte regVal = read_register(ADNS3080_CONFIGURATION_BITS); if( resolution == ADNS3080_RESOLUTION_400 ) { regVal &= ~0x10; }else if( resolution == ADNS3080_RESOLUTION_1200) { regVal |= 0x10; } delayMicroseconds(50); // small delay write_register(ADNS3080_CONFIGURATION_BITS, regVal); } // get_frame_rate_auto - return whether frame rate is set to "auto" or manual bool AP_OpticalFlow_ADNS3080::get_frame_rate_auto() { byte regVal = read_register(ADNS3080_EXTENDED_CONFIG); if( regVal & 0x01 > 0 ) { return false; }else{ return true; } } // set_frame_rate_auto - set frame rate to auto (true) or manual (false) void AP_OpticalFlow_ADNS3080::set_frame_rate_auto(bool auto_frame_rate) { byte regVal = read_register(ADNS3080_EXTENDED_CONFIG); delayMicroseconds(50); // small delay if( auto_frame_rate == true ) { // set specific frame period write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,0xE0); delayMicroseconds(50); // small delay write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,0x1A); delayMicroseconds(50); // small delay // decide what value to update in extended config regVal = (regVal & ~0x01); }else{ // decide what value to update in extended config regVal = (regVal & ~0x01) | 0x01; } write_register(ADNS3080_EXTENDED_CONFIG, regVal); } // get frame period unsigned int AP_OpticalFlow_ADNS3080::get_frame_period() { NumericIntType aNum; aNum.byteValue[1] = read_register(ADNS3080_FRAME_PERIOD_UPPER); delayMicroseconds(50); // small delay aNum.byteValue[0] = read_register(ADNS3080_FRAME_PERIOD_LOWER); return aNum.uintValue; } // set frame period void AP_OpticalFlow_ADNS3080::set_frame_period(unsigned int period) { NumericIntType aNum; aNum.uintValue = period; // set frame rate to manual set_frame_rate_auto(false); delayMicroseconds(50); // small delay // set specific frame period write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,aNum.byteValue[0]); delayMicroseconds(50); // small delay write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,aNum.byteValue[1]); } unsigned int AP_OpticalFlow_ADNS3080::get_frame_rate() { unsigned long clockSpeed = ADNS3080_CLOCK_SPEED; unsigned int rate = clockSpeed / get_frame_period(); return rate; } void AP_OpticalFlow_ADNS3080::set_frame_rate(unsigned int rate) { unsigned long clockSpeed = ADNS3080_CLOCK_SPEED; unsigned int period = (unsigned int)(clockSpeed / (unsigned long)rate); set_frame_period(period); } // get_shutter_speed_auto - returns true if shutter speed is adjusted automatically, false if manual bool AP_OpticalFlow_ADNS3080::get_shutter_speed_auto() { byte regVal = read_register(ADNS3080_EXTENDED_CONFIG); if( (regVal & 0x02) > 0 ) { return false; }else{ return true; } } // set_shutter_speed_auto - set shutter speed to auto (true), or manual (false) void AP_OpticalFlow_ADNS3080::set_shutter_speed_auto(bool auto_shutter_speed) { byte regVal = read_register(ADNS3080_EXTENDED_CONFIG); delayMicroseconds(50); // small delay if( auto_shutter_speed ) { // return shutter speed max to default write_register(ADNS3080_SHUTTER_MAX_BOUND_LOWER,0x8c); delayMicroseconds(50); // small delay write_register(ADNS3080_SHUTTER_MAX_BOUND_UPPER,0x20); delayMicroseconds(50); // small delay // determine value to put into extended config regVal = regVal & ~0x02; }else{ // determine value to put into extended config regVal = regVal & ~0x02 | 0x02; } write_register(ADNS3080_EXTENDED_CONFIG, regVal); delayMicroseconds(50); // small delay } // get_shutter_speed_auto - returns true if shutter speed is adjusted automatically, false if manual unsigned int AP_OpticalFlow_ADNS3080::get_shutter_speed() { NumericIntType aNum; aNum.byteValue[1] = read_register(ADNS3080_SHUTTER_UPPER); delayMicroseconds(50); // small delay aNum.byteValue[0] = read_register(ADNS3080_SHUTTER_LOWER); return aNum.uintValue; } // set_shutter_speed_auto - set shutter speed to auto (true), or manual (false) unsigned int AP_OpticalFlow_ADNS3080::set_shutter_speed(unsigned int shutter_speed) { NumericIntType aNum; aNum.uintValue = shutter_speed; // set shutter speed to manual set_shutter_speed_auto(false); delayMicroseconds(50); // small delay // set specific shutter speed write_register(ADNS3080_SHUTTER_MAX_BOUND_LOWER,aNum.byteValue[0]); delayMicroseconds(50); // small delay write_register(ADNS3080_SHUTTER_MAX_BOUND_UPPER,aNum.byteValue[1]); delayMicroseconds(50); // small delay // larger delay delay(50); // need to update frame period to cause shutter value to take effect aNum.byteValue[1] = read_register(ADNS3080_FRAME_PERIOD_UPPER); delayMicroseconds(50); // small delay aNum.byteValue[0] = read_register(ADNS3080_FRAME_PERIOD_LOWER); delayMicroseconds(50); // small delay write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,aNum.byteValue[0]); delayMicroseconds(50); // small delay write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,aNum.byteValue[1]); delayMicroseconds(50); // small delay } // clear_motion - will cause the Delta_X, Delta_Y, and internal motion registers to be cleared void AP_OpticalFlow_ADNS3080::clear_motion() { write_register(ADNS3080_MOTION_CLEAR,0xFF); // writing anything to this register will clear the sensor's motion registers x = 0; y = 0; dx = 0; dy = 0; _motion = false; } // get_pixel_data - captures an image from the sensor and stores it to the pixe_data array int AP_OpticalFlow_ADNS3080::print_pixel_data(Stream *serPort) { int i,j; bool isFirstPixel = true; byte regValue; byte pixelValue; // write to frame capture register to force capture of frame write_register(ADNS3080_FRAME_CAPTURE,0x83); // wait 3 frame periods + 10 nanoseconds for frame to be captured delayMicroseconds(1510); // min frame speed is 2000 frames/second so 1 frame = 500 nano seconds. so 500 x 3 + 10 = 1510 // display the pixel data for( i=0; iprintln("failed to find first pixel"); } isFirstPixel = false; pixelValue = ( regValue << 2); serPort->print(pixelValue,DEC); if( j!= ADNS3080_PIXELS_X-1 ) serPort->print(","); delayMicroseconds(50); } serPort->println(); } // hardware reset to restore sensor to normal operation reset(); }