#pragma once #include "Copter.h" #include #include // TODO why is this needed if Copter.h includes this #if ADVANCED_FAILSAFE #include "afs_copter.h" #endif class Parameters; class ParametersG2; class GCS_Copter; // object shared by both Guided and Auto for takeoff. // position controller controls vehicle but the user can control the yaw. class _AutoTakeoff { public: void run(); void start(float complete_alt_cm, bool terrain_alt); bool get_completion_pos(Vector3p& pos_neu_cm); bool complete; // true when takeoff is complete private: // altitude above-ekf-origin below which auto takeoff does not control horizontal position bool no_nav_active; float no_nav_alt_cm; // auto takeoff variables float complete_alt_cm; // completion altitude expressed in cm above ekf origin or above terrain (depending upon auto_takeoff_terrain_alt) bool terrain_alt; // true if altitudes are above terrain Vector3p complete_pos; // target takeoff position as offset from ekf origin in cm }; #if AC_PAYLOAD_PLACE_ENABLED class PayloadPlace { public: void run(); void start_descent(); bool verify(); enum class State : uint8_t { FlyToLocation, Descent_Start, Descent, Release, Releasing, Delay, Ascent_Start, Ascent, Done, }; // these are set by the Mission code: State state = State::Descent_Start; // records state of payload place float descent_max_cm; private: uint32_t descent_established_time_ms; // milliseconds uint32_t place_start_time_ms; // milliseconds float descent_thrust_level; float descent_start_altitude_cm; float descent_speed_cms; }; #endif class Mode { friend class PayloadPlace; public: // Auto Pilot Modes enumeration enum class Number : uint8_t { STABILIZE = 0, // manual airframe angle with manual throttle ACRO = 1, // manual body-frame angular rate with manual throttle ALT_HOLD = 2, // manual airframe angle with automatic throttle AUTO = 3, // fully automatic waypoint control using mission commands GUIDED = 4, // fully automatic fly to coordinate or fly at velocity/direction using GCS immediate commands LOITER = 5, // automatic horizontal acceleration with automatic throttle RTL = 6, // automatic return to launching point CIRCLE = 7, // automatic circular flight with automatic throttle LAND = 9, // automatic landing with horizontal position control DRIFT = 11, // semi-autonomous position, yaw and throttle control SPORT = 13, // manual earth-frame angular rate control with manual throttle FLIP = 14, // automatically flip the vehicle on the roll axis AUTOTUNE = 15, // automatically tune the vehicle's roll and pitch gains POSHOLD = 16, // automatic position hold with manual override, with automatic throttle BRAKE = 17, // full-brake using inertial/GPS system, no pilot input THROW = 18, // throw to launch mode using inertial/GPS system, no pilot input AVOID_ADSB = 19, // automatic avoidance of obstacles in the macro scale - e.g. full-sized aircraft GUIDED_NOGPS = 20, // guided mode but only accepts attitude and altitude SMART_RTL = 21, // SMART_RTL returns to home by retracing its steps FLOWHOLD = 22, // FLOWHOLD holds position with optical flow without rangefinder FOLLOW = 23, // follow attempts to follow another vehicle or ground station ZIGZAG = 24, // ZIGZAG mode is able to fly in a zigzag manner with predefined point A and point B SYSTEMID = 25, // System ID mode produces automated system identification signals in the controllers AUTOROTATE = 26, // Autonomous autorotation AUTO_RTL = 27, // Auto RTL, this is not a true mode, AUTO will report as this mode if entered to perform a DO_LAND_START Landing sequence TURTLE = 28, // Flip over after crash // Mode number 127 reserved for the "drone show mode" in the Skybrush // fork at https://github.com/skybrush-io/ardupilot }; // constructor Mode(void); // do not allow copying CLASS_NO_COPY(Mode); friend class _AutoTakeoff; // returns a unique number specific to this mode virtual Number mode_number() const = 0; // child classes should override these methods virtual bool init(bool ignore_checks) { return true; } virtual void exit() {}; virtual void run() = 0; virtual bool requires_GPS() const = 0; virtual bool has_manual_throttle() const = 0; virtual bool allows_arming(AP_Arming::Method method) const = 0; virtual bool is_autopilot() const { return false; } virtual bool has_user_takeoff(bool must_navigate) const { return false; } virtual bool in_guided_mode() const { return false; } virtual bool logs_attitude() const { return false; } virtual bool allows_save_trim() const { return false; } virtual bool allows_autotune() const { return false; } virtual bool allows_flip() const { return false; } virtual bool crash_check_enabled() const { return true; } #if ADVANCED_FAILSAFE // Return the type of this mode for use by advanced failsafe virtual AP_AdvancedFailsafe_Copter::control_mode afs_mode() const { return AP_AdvancedFailsafe_Copter::control_mode::AFS_STABILIZED; } #endif // Return true if the throttle high arming check can be skipped when arming from GCS or Scripting virtual bool allows_GCS_or_SCR_arming_with_throttle_high() const { return false; } #if FRAME_CONFIG == HELI_FRAME virtual bool allows_inverted() const { return false; }; #endif // return a string for this flightmode virtual const char *name() const = 0; virtual const char *name4() const = 0; bool do_user_takeoff(float takeoff_alt_cm, bool must_navigate); virtual bool is_taking_off() const; static void takeoff_stop() { takeoff.stop(); } virtual bool is_landing() const { return false; } // mode requires terrain to be present to be functional virtual bool requires_terrain_failsafe() const { return false; } // functions for reporting to GCS virtual bool get_wp(Location &loc) const { return false; }; virtual int32_t wp_bearing() const { return 0; } virtual uint32_t wp_distance() const { return 0; } virtual float crosstrack_error() const { return 0.0f;} // functions to support MAV_CMD_DO_CHANGE_SPEED virtual bool set_speed_xy(float speed_xy_cms) {return false;} virtual bool set_speed_up(float speed_xy_cms) {return false;} virtual bool set_speed_down(float speed_xy_cms) {return false;} int32_t get_alt_above_ground_cm(void); // pilot input processing void get_pilot_desired_lean_angles(float &roll_out_cd, float &pitch_out_cd, float angle_max_cd, float angle_limit_cd) const; Vector2f get_pilot_desired_velocity(float vel_max) const; float get_pilot_desired_yaw_rate() const; float get_pilot_desired_throttle() const; // returns climb target_rate reduced to avoid obstacles and // altitude fence float get_avoidance_adjusted_climbrate(float target_rate); // send output to the motors, can be overridden by subclasses virtual void output_to_motors(); // returns true if pilot's yaw input should be used to adjust vehicle's heading virtual bool use_pilot_yaw() const {return true; } // pause and resume a mode virtual bool pause() { return false; }; virtual bool resume() { return false; }; // handle situations where the vehicle is on the ground waiting for takeoff void make_safe_ground_handling(bool force_throttle_unlimited = false); // true if weathervaning is allowed in the current mode #if WEATHERVANE_ENABLED virtual bool allows_weathervaning() const { return false; } #endif protected: // helper functions bool is_disarmed_or_landed() const; void zero_throttle_and_relax_ac(bool spool_up = false); void zero_throttle_and_hold_attitude(); // Return stopping point as a location with above origin alt frame Location get_stopping_point() const; // functions to control normal landing. pause_descent is true if vehicle should not descend void land_run_horizontal_control(); void land_run_vertical_control(bool pause_descent = false); void land_run_horiz_and_vert_control(bool pause_descent = false) { land_run_horizontal_control(); land_run_vertical_control(pause_descent); } #if AC_PAYLOAD_PLACE_ENABLED // payload place flight behaviour: static PayloadPlace payload_place; #endif // run normal or precision landing (if enabled) // pause_descent is true if vehicle should not descend void land_run_normal_or_precland(bool pause_descent = false); #if AC_PRECLAND_ENABLED // Go towards a position commanded by prec land state machine in order to retry landing // The passed in location is expected to be NED and in meters void precland_retry_position(const Vector3f &retry_pos); // Run precland statemachine. This function should be called from any mode that wants to do precision landing. // This handles everything from prec landing, to prec landing failures, to retries and failsafe measures void precland_run(); #endif // return expected input throttle setting to hover: virtual float throttle_hover() const; // Alt_Hold based flight mode states used in Alt_Hold, Loiter, and Sport enum class AltHoldModeState { MotorStopped, Takeoff, Landed_Ground_Idle, Landed_Pre_Takeoff, Flying }; AltHoldModeState get_alt_hold_state(float target_climb_rate_cms); // convenience references to avoid code churn in conversion: Parameters &g; ParametersG2 &g2; AC_WPNav *&wp_nav; AC_Loiter *&loiter_nav; AC_PosControl *&pos_control; AP_InertialNav &inertial_nav; AP_AHRS &ahrs; AC_AttitudeControl *&attitude_control; MOTOR_CLASS *&motors; RC_Channel *&channel_roll; RC_Channel *&channel_pitch; RC_Channel *&channel_throttle; RC_Channel *&channel_yaw; float &G_Dt; // note that we support two entirely different automatic takeoffs: // "user-takeoff", which is available in modes such as ALT_HOLD // (see has_user_takeoff method). "user-takeoff" is a simple // reach-altitude-based-on-pilot-input-or-parameter routine. // "auto-takeoff" is used by both Guided and Auto, and is // basically waypoint navigation with pilot yaw permitted. // user-takeoff support; takeoff state is shared across all mode instances class _TakeOff { public: void start(float alt_cm); void stop(); void do_pilot_takeoff(float& pilot_climb_rate); bool triggered(float target_climb_rate) const; bool running() const { return _running; } private: bool _running; float take_off_start_alt; float take_off_complete_alt; }; static _TakeOff takeoff; virtual bool do_user_takeoff_start(float takeoff_alt_cm); static _AutoTakeoff auto_takeoff; public: // Navigation Yaw control class AutoYaw { public: // Autopilot Yaw Mode enumeration enum class Mode { HOLD = 0, // hold zero yaw rate LOOK_AT_NEXT_WP = 1, // point towards next waypoint (no pilot input accepted) ROI = 2, // point towards a location held in roi (no pilot input accepted) FIXED = 3, // point towards a particular angle (no pilot input accepted) LOOK_AHEAD = 4, // point in the direction the copter is moving RESETTOARMEDYAW = 5, // point towards heading at time motors were armed ANGLE_RATE = 6, // turn at a specified rate from a starting angle RATE = 7, // turn at a specified rate (held in auto_yaw_rate) CIRCLE = 8, // use AC_Circle's provided yaw (used during Loiter-Turns commands) PILOT_RATE = 9, // target rate from pilot stick WEATHERVANE = 10, // yaw into wind }; // mode(): current method of determining desired yaw: Mode mode() const { return _mode; } void set_mode_to_default(bool rtl); void set_mode(Mode new_mode); Mode default_mode(bool rtl) const; void set_rate(float new_rate_cds); // set_roi(...): set a "look at" location: void set_roi(const Location &roi_location); void set_fixed_yaw(float angle_deg, float turn_rate_dps, int8_t direction, bool relative_angle); void set_yaw_angle_rate(float yaw_angle_d, float yaw_rate_ds); void set_yaw_angle_offset(const float yaw_angle_offset_d); bool reached_fixed_yaw_target(); #if WEATHERVANE_ENABLED void update_weathervane(const int16_t pilot_yaw_cds); #endif AC_AttitudeControl::HeadingCommand get_heading(); private: // yaw_cd(): main product of AutoYaw; the heading: float yaw_cd(); // rate_cds(): desired yaw rate in centidegrees/second: float rate_cds(); // returns a yaw in degrees, direction of vehicle travel: float look_ahead_yaw(); float roi_yaw() const; // auto flight mode's yaw mode Mode _mode = Mode::LOOK_AT_NEXT_WP; Mode _last_mode; // Yaw will point at this location if mode is set to Mode::ROI Vector3f roi; // yaw used for YAW_FIXED yaw_mode float _fixed_yaw_offset_cd; // Deg/s we should turn float _fixed_yaw_slewrate_cds; // time of the last yaw update uint32_t _last_update_ms; // heading when in yaw_look_ahead_yaw float _look_ahead_yaw; // turn rate (in cds) when auto_yaw_mode is set to AUTO_YAW_RATE float _yaw_angle_cd; float _yaw_rate_cds; float _pilot_yaw_rate_cds; }; static AutoYaw auto_yaw; // pass-through functions to reduce code churn on conversion; // these are candidates for moving into the Mode base // class. float get_pilot_desired_climb_rate(float throttle_control); float get_non_takeoff_throttle(void); void update_simple_mode(void); bool set_mode(Mode::Number mode, ModeReason reason); void set_land_complete(bool b); GCS_Copter &gcs(); uint16_t get_pilot_speed_dn(void); // end pass-through functions }; #if MODE_ACRO_ENABLED class ModeAcro : public Mode { public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::ACRO; } enum class Trainer { OFF = 0, LEVELING = 1, LIMITED = 2, }; enum class AcroOptions { AIR_MODE = 1 << 0, RATE_LOOP_ONLY = 1 << 1, }; virtual void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return true; } bool allows_arming(AP_Arming::Method method) const override { return true; }; bool is_autopilot() const override { return false; } bool init(bool ignore_checks) override; void exit() override; // whether an air-mode aux switch has been toggled void air_mode_aux_changed(); bool allows_save_trim() const override { return true; } bool allows_flip() const override { return true; } bool crash_check_enabled() const override { return false; } protected: const char *name() const override { return "ACRO"; } const char *name4() const override { return "ACRO"; } // get_pilot_desired_angle_rates - transform pilot's normalised roll pitch and yaw input into a desired lean angle rates // inputs are -1 to 1 and the function returns desired angle rates in centi-degrees-per-second void get_pilot_desired_angle_rates(float roll_in, float pitch_in, float yaw_in, float &roll_out, float &pitch_out, float &yaw_out); float throttle_hover() const override; private: bool disable_air_mode_reset; }; #endif #if FRAME_CONFIG == HELI_FRAME class ModeAcro_Heli : public ModeAcro { public: // inherit constructor using ModeAcro::Mode; bool init(bool ignore_checks) override; void run() override; void virtual_flybar( float &roll_out, float &pitch_out, float &yaw_out, float pitch_leak, float roll_leak); protected: private: }; #endif class ModeAltHold : public Mode { public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::ALT_HOLD; } bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return true; }; bool is_autopilot() const override { return false; } bool has_user_takeoff(bool must_navigate) const override { return !must_navigate; } bool allows_autotune() const override { return true; } bool allows_flip() const override { return true; } #if FRAME_CONFIG == HELI_FRAME bool allows_inverted() const override { return true; }; #endif protected: const char *name() const override { return "ALT_HOLD"; } const char *name4() const override { return "ALTH"; } private: }; class ModeAuto : public Mode { public: friend class PayloadPlace; // in case wp_run is accidentally required // inherit constructor using Mode::Mode; Number mode_number() const override { return auto_RTL? Number::AUTO_RTL : Number::AUTO; } bool init(bool ignore_checks) override; void exit() override; void run() override; bool requires_GPS() const override; bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override; bool is_autopilot() const override { return true; } bool in_guided_mode() const override { return _mode == SubMode::NAVGUIDED || _mode == SubMode::NAV_SCRIPT_TIME; } #if FRAME_CONFIG == HELI_FRAME bool allows_inverted() const override { return true; }; #endif #if ADVANCED_FAILSAFE // Return the type of this mode for use by advanced failsafe AP_AdvancedFailsafe_Copter::control_mode afs_mode() const override { return AP_AdvancedFailsafe_Copter::control_mode::AFS_AUTO; } #endif // Return true if the throttle high arming check can be skipped when arming from GCS or Scripting bool allows_GCS_or_SCR_arming_with_throttle_high() const override { return true; } // Auto modes enum class SubMode : uint8_t { TAKEOFF, WP, LAND, RTL, CIRCLE_MOVE_TO_EDGE, CIRCLE, NAVGUIDED, LOITER, LOITER_TO_ALT, #if AP_MISSION_NAV_PAYLOAD_PLACE_ENABLED && AC_PAYLOAD_PLACE_ENABLED NAV_PAYLOAD_PLACE, #endif NAV_SCRIPT_TIME, NAV_ATTITUDE_TIME, }; // set submode. returns true on success, false on failure void set_submode(SubMode new_submode); // pause continue in auto mode bool pause() override; bool resume() override; bool paused() const; bool loiter_start(); void rtl_start(); void takeoff_start(const Location& dest_loc); bool wp_start(const Location& dest_loc); void land_start(); void circle_movetoedge_start(const Location &circle_center, float radius_m, bool ccw_turn); void circle_start(); void nav_guided_start(); bool is_landing() const override; bool is_taking_off() const override; bool use_pilot_yaw() const override; bool set_speed_xy(float speed_xy_cms) override; bool set_speed_up(float speed_up_cms) override; bool set_speed_down(float speed_down_cms) override; bool requires_terrain_failsafe() const override { return true; } void payload_place_start(); // for GCS_MAVLink to call: bool do_guided(const AP_Mission::Mission_Command& cmd); // Go straight to landing sequence via DO_LAND_START, if succeeds pretend to be Auto RTL mode bool jump_to_landing_sequence_auto_RTL(ModeReason reason); // Join mission after DO_RETURN_PATH_START waypoint, if succeeds pretend to be Auto RTL mode bool return_path_start_auto_RTL(ModeReason reason); // Try join return path else do land start bool return_path_or_jump_to_landing_sequence_auto_RTL(ModeReason reason); // lua accessors for nav script time support bool nav_script_time(uint16_t &id, uint8_t &cmd, float &arg1, float &arg2, int16_t &arg3, int16_t &arg4); void nav_script_time_done(uint16_t id); AP_Mission mission{ FUNCTOR_BIND_MEMBER(&ModeAuto::start_command, bool, const AP_Mission::Mission_Command &), FUNCTOR_BIND_MEMBER(&ModeAuto::verify_command, bool, const AP_Mission::Mission_Command &), FUNCTOR_BIND_MEMBER(&ModeAuto::exit_mission, void)}; // Mission change detector AP_Mission_ChangeDetector mis_change_detector; // true if weathervaning is allowed in auto #if WEATHERVANE_ENABLED bool allows_weathervaning(void) const override; #endif protected: const char *name() const override { return auto_RTL? "AUTO RTL" : "AUTO"; } const char *name4() const override { return auto_RTL? "ARTL" : "AUTO"; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; float crosstrack_error() const override { return wp_nav->crosstrack_error();} bool get_wp(Location &loc) const override; private: enum class Option : int32_t { AllowArming = (1 << 0U), AllowTakeOffWithoutRaisingThrottle = (1 << 1U), IgnorePilotYaw = (1 << 2U), AllowWeatherVaning = (1 << 7U), }; bool option_is_enabled(Option option) const; // Enter auto rtl pseudo mode bool enter_auto_rtl(ModeReason reason); bool start_command(const AP_Mission::Mission_Command& cmd); bool verify_command(const AP_Mission::Mission_Command& cmd); void exit_mission(); bool check_for_mission_change(); // detect external changes to mission void takeoff_run(); void wp_run(); void land_run(); void rtl_run(); void circle_run(); void nav_guided_run(); void loiter_run(); void loiter_to_alt_run(); void nav_attitude_time_run(); // return the Location portion of a command. If the command's lat and lon and/or alt are zero the default_loc's lat,lon and/or alt are returned instead Location loc_from_cmd(const AP_Mission::Mission_Command& cmd, const Location& default_loc) const; SubMode _mode = SubMode::TAKEOFF; // controls which auto controller is run bool shift_alt_to_current_alt(Location& target_loc) const; // subtract position controller offsets from target location // should be used when the location will be used as a target for the position controller void subtract_pos_offsets(Location& target_loc) const; void do_takeoff(const AP_Mission::Mission_Command& cmd); void do_nav_wp(const AP_Mission::Mission_Command& cmd); bool set_next_wp(const AP_Mission::Mission_Command& current_cmd, const Location &default_loc); void do_land(const AP_Mission::Mission_Command& cmd); void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd); void do_circle(const AP_Mission::Mission_Command& cmd); void do_loiter_time(const AP_Mission::Mission_Command& cmd); void do_loiter_to_alt(const AP_Mission::Mission_Command& cmd); void do_spline_wp(const AP_Mission::Mission_Command& cmd); void get_spline_from_cmd(const AP_Mission::Mission_Command& cmd, const Location& default_loc, Location& dest_loc, Location& next_dest_loc, bool& next_dest_loc_is_spline); #if AC_NAV_GUIDED void do_nav_guided_enable(const AP_Mission::Mission_Command& cmd); void do_guided_limits(const AP_Mission::Mission_Command& cmd); #endif void do_nav_delay(const AP_Mission::Mission_Command& cmd); void do_wait_delay(const AP_Mission::Mission_Command& cmd); void do_within_distance(const AP_Mission::Mission_Command& cmd); void do_yaw(const AP_Mission::Mission_Command& cmd); void do_change_speed(const AP_Mission::Mission_Command& cmd); void do_set_home(const AP_Mission::Mission_Command& cmd); void do_roi(const AP_Mission::Mission_Command& cmd); void do_mount_control(const AP_Mission::Mission_Command& cmd); #if HAL_PARACHUTE_ENABLED void do_parachute(const AP_Mission::Mission_Command& cmd); #endif #if AP_WINCH_ENABLED void do_winch(const AP_Mission::Mission_Command& cmd); #endif void do_payload_place(const AP_Mission::Mission_Command& cmd); void do_RTL(void); #if AP_SCRIPTING_ENABLED void do_nav_script_time(const AP_Mission::Mission_Command& cmd); #endif void do_nav_attitude_time(const AP_Mission::Mission_Command& cmd); bool verify_takeoff(); bool verify_land(); bool verify_payload_place(); bool verify_loiter_unlimited(); bool verify_loiter_time(const AP_Mission::Mission_Command& cmd); bool verify_loiter_to_alt() const; bool verify_RTL(); bool verify_wait_delay(); bool verify_within_distance(); bool verify_yaw(); bool verify_nav_wp(const AP_Mission::Mission_Command& cmd); bool verify_circle(const AP_Mission::Mission_Command& cmd); bool verify_spline_wp(const AP_Mission::Mission_Command& cmd); #if AC_NAV_GUIDED bool verify_nav_guided_enable(const AP_Mission::Mission_Command& cmd); #endif bool verify_nav_delay(const AP_Mission::Mission_Command& cmd); #if AP_SCRIPTING_ENABLED bool verify_nav_script_time(); #endif bool verify_nav_attitude_time(const AP_Mission::Mission_Command& cmd); // Loiter control uint16_t loiter_time_max; // How long we should stay in Loiter Mode for mission scripting (time in seconds) uint32_t loiter_time; // How long have we been loitering - The start time in millis struct { bool reached_destination_xy : 1; bool loiter_start_done : 1; bool reached_alt : 1; float alt_error_cm; int32_t alt; } loiter_to_alt; // Delay the next navigation command uint32_t nav_delay_time_max_ms; // used for delaying the navigation commands (eg land,takeoff etc.) uint32_t nav_delay_time_start_ms; // Delay Mission Scripting Command int32_t condition_value; // used in condition commands (eg delay, change alt, etc.) uint32_t condition_start; // Land within Auto state enum class State { FlyToLocation = 0, Descending = 1 }; State state = State::FlyToLocation; bool waiting_to_start; // true if waiting for vehicle to be armed or EKF origin before starting mission // True if we have entered AUTO to perform a DO_LAND_START landing sequence and we should report as AUTO RTL mode bool auto_RTL; #if AP_SCRIPTING_ENABLED // nav_script_time command variables struct { bool done; // true once lua script indicates it has completed uint16_t id; // unique id to avoid race conditions between commands and lua scripts uint32_t start_ms; // system time nav_script_time command was received (used for timeout) uint8_t command; // command number provided by mission command uint8_t timeout_s; // timeout (in seconds) provided by mission command float arg1; // 1st argument provided by mission command float arg2; // 2nd argument provided by mission command int16_t arg3; // 3rd argument provided by mission command int16_t arg4; // 4th argument provided by mission command } nav_scripting; #endif // nav attitude time command variables struct { int16_t roll_deg; // target roll angle in degrees. provided by mission command int8_t pitch_deg; // target pitch angle in degrees. provided by mission command int16_t yaw_deg; // target yaw angle in degrees. provided by mission command float climb_rate; // climb rate in m/s. provided by mission command uint32_t start_ms; // system time that nav attitude time command was received (used for timeout) } nav_attitude_time; // desired speeds struct { float xy; // desired speed horizontally in m/s. 0 if unset float up; // desired speed upwards in m/s. 0 if unset float down; // desired speed downwards in m/s. 0 if unset } desired_speed_override; }; #if AUTOTUNE_ENABLED /* wrapper class for AC_AutoTune */ #if FRAME_CONFIG == HELI_FRAME class AutoTune : public AC_AutoTune_Heli #else class AutoTune : public AC_AutoTune_Multi #endif { public: bool init() override; void run() override; protected: bool position_ok() override; float get_pilot_desired_climb_rate_cms(void) const override; void get_pilot_desired_rp_yrate_cd(float &roll_cd, float &pitch_cd, float &yaw_rate_cds) override; void init_z_limits() override; #if HAL_LOGGING_ENABLED void log_pids() override; #endif }; class ModeAutoTune : public Mode { // ParametersG2 sets a pointer within our autotune object: friend class ParametersG2; public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::AUTOTUNE; } bool init(bool ignore_checks) override; void exit() override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return false; } bool is_autopilot() const override { return false; } AutoTune autotune; protected: const char *name() const override { return "AUTOTUNE"; } const char *name4() const override { return "ATUN"; } }; #endif class ModeBrake : public Mode { public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::BRAKE; } bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return false; }; bool is_autopilot() const override { return false; } void timeout_to_loiter_ms(uint32_t timeout_ms); protected: const char *name() const override { return "BRAKE"; } const char *name4() const override { return "BRAK"; } private: uint32_t _timeout_start; uint32_t _timeout_ms; }; class ModeCircle : public Mode { public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::CIRCLE; } bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return false; }; bool is_autopilot() const override { return true; } protected: const char *name() const override { return "CIRCLE"; } const char *name4() const override { return "CIRC"; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; private: // Circle bool speed_changing = false; // true when the roll stick is being held to facilitate stopping at 0 rate }; class ModeDrift : public Mode { public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::DRIFT; } bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return true; }; bool is_autopilot() const override { return false; } protected: const char *name() const override { return "DRIFT"; } const char *name4() const override { return "DRIF"; } private: float get_throttle_assist(float velz, float pilot_throttle_scaled); }; class ModeFlip : public Mode { public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::FLIP; } bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return false; }; bool is_autopilot() const override { return false; } bool crash_check_enabled() const override { return false; } protected: const char *name() const override { return "FLIP"; } const char *name4() const override { return "FLIP"; } private: // Flip Vector3f orig_attitude; // original vehicle attitude before flip enum class FlipState : uint8_t { Start, Roll, Pitch_A, Pitch_B, Recover, Abandon }; FlipState _state; // current state of flip Mode::Number orig_control_mode; // flight mode when flip was initated uint32_t start_time_ms; // time since flip began int8_t roll_dir; // roll direction (-1 = roll left, 1 = roll right) int8_t pitch_dir; // pitch direction (-1 = pitch forward, 1 = pitch back) }; #if MODE_FLOWHOLD_ENABLED /* class to support FLOWHOLD mode, which is a position hold mode using optical flow directly, avoiding the need for a rangefinder */ class ModeFlowHold : public Mode { public: // need a constructor for parameters ModeFlowHold(void); Number mode_number() const override { return Number::FLOWHOLD; } bool init(bool ignore_checks) override; void run(void) override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return true; }; bool is_autopilot() const override { return false; } bool has_user_takeoff(bool must_navigate) const override { return !must_navigate; } bool allows_flip() const override { return true; } static const struct AP_Param::GroupInfo var_info[]; protected: const char *name() const override { return "FLOWHOLD"; } const char *name4() const override { return "FHLD"; } private: // FlowHold states enum FlowHoldModeState { FlowHold_MotorStopped, FlowHold_Takeoff, FlowHold_Flying, FlowHold_Landed }; // calculate attitude from flow data void flow_to_angle(Vector2f &bf_angle); LowPassFilterConstDtVector2f flow_filter; bool flowhold_init(bool ignore_checks); void flowhold_run(); void flowhold_flow_to_angle(Vector2f &angle, bool stick_input); void update_height_estimate(void); // minimum assumed height const float height_min = 0.1f; // maximum scaling height const float height_max = 3.0f; AP_Float flow_max; AC_PI_2D flow_pi_xy{0.2f, 0.3f, 3000, 5, 0.0025f}; AP_Float flow_filter_hz; AP_Int8 flow_min_quality; AP_Int8 brake_rate_dps; float quality_filtered; uint8_t log_counter; bool limited; Vector2f xy_I; // accumulated INS delta velocity in north-east form since last flow update Vector2f delta_velocity_ne; // last flow rate in radians/sec in north-east axis Vector2f last_flow_rate_rps; // timestamp of last flow data uint32_t last_flow_ms; float last_ins_height; float height_offset; // are we braking after pilot input? bool braking; // last time there was significant stick input uint32_t last_stick_input_ms; }; #endif // MODE_FLOWHOLD_ENABLED class ModeGuided : public Mode { public: #if AP_EXTERNAL_CONTROL_ENABLED friend class AP_ExternalControl_Copter; #endif // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::GUIDED; } bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override; bool is_autopilot() const override { return true; } bool has_user_takeoff(bool must_navigate) const override { return true; } bool in_guided_mode() const override { return true; } bool requires_terrain_failsafe() const override { return true; } #if ADVANCED_FAILSAFE // Return the type of this mode for use by advanced failsafe AP_AdvancedFailsafe_Copter::control_mode afs_mode() const override { return AP_AdvancedFailsafe_Copter::control_mode::AFS_AUTO; } #endif // Return true if the throttle high arming check can be skipped when arming from GCS or Scripting bool allows_GCS_or_SCR_arming_with_throttle_high() const override { return true; } // Sets guided's angular target submode: Using a rotation quaternion, angular velocity, and climbrate or thrust (depends on user option) // attitude_quat: IF zero: ang_vel (angular velocity) must be provided even if all zeroes // IF non-zero: attitude_control is performed using both the attitude quaternion and angular velocity // ang_vel: angular velocity (rad/s) // climb_rate_cms_or_thrust: represents either the climb_rate (cm/s) or thrust scaled from [0, 1], unitless // use_thrust: IF true: climb_rate_cms_or_thrust represents thrust // IF false: climb_rate_cms_or_thrust represents climb_rate (cm/s) void set_angle(const Quaternion &attitude_quat, const Vector3f &ang_vel, float climb_rate_cms_or_thrust, bool use_thrust); bool set_destination(const Vector3f& destination, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false, bool terrain_alt = false); bool set_destination(const Location& dest_loc, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false); bool get_wp(Location &loc) const override; void set_accel(const Vector3f& acceleration, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false, bool log_request = true); void set_velocity(const Vector3f& velocity, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false, bool log_request = true); void set_velaccel(const Vector3f& velocity, const Vector3f& acceleration, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false, bool log_request = true); bool set_destination_posvel(const Vector3f& destination, const Vector3f& velocity, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false); bool set_destination_posvelaccel(const Vector3f& destination, const Vector3f& velocity, const Vector3f& acceleration, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false); // get position, velocity and acceleration targets const Vector3p& get_target_pos() const; const Vector3f& get_target_vel() const; const Vector3f& get_target_accel() const; // returns true if GUIDED_OPTIONS param suggests SET_ATTITUDE_TARGET's "thrust" field should be interpreted as thrust instead of climb rate bool set_attitude_target_provides_thrust() const; bool stabilizing_pos_xy() const; bool stabilizing_vel_xy() const; bool use_wpnav_for_position_control() const; void limit_clear(); void limit_init_time_and_pos(); void limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm); bool limit_check(); bool is_taking_off() const override; bool set_speed_xy(float speed_xy_cms) override; bool set_speed_up(float speed_up_cms) override; bool set_speed_down(float speed_down_cms) override; // initialises position controller to implement take-off // takeoff_alt_cm is interpreted as alt-above-home (in cm) or alt-above-terrain if a rangefinder is available bool do_user_takeoff_start(float takeoff_alt_cm) override; enum class SubMode { TakeOff, WP, Pos, PosVelAccel, VelAccel, Accel, Angle, }; SubMode submode() const { return guided_mode; } void angle_control_start(); void angle_control_run(); // return guided mode timeout in milliseconds. Only used for velocity, acceleration, angle control, and angular rate control uint32_t get_timeout_ms() const; bool use_pilot_yaw() const override; // pause continue in guided mode bool pause() override; bool resume() override; // true if weathervaning is allowed in guided #if WEATHERVANE_ENABLED bool allows_weathervaning(void) const override; #endif protected: const char *name() const override { return "GUIDED"; } const char *name4() const override { return "GUID"; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; float crosstrack_error() const override; private: // enum for GUID_OPTIONS parameter enum class Option : uint32_t { AllowArmingFromTX = (1U << 0), // this bit is still available, pilot yaw was mapped to bit 2 for symmetry with auto IgnorePilotYaw = (1U << 2), SetAttitudeTarget_ThrustAsThrust = (1U << 3), DoNotStabilizePositionXY = (1U << 4), DoNotStabilizeVelocityXY = (1U << 5), WPNavUsedForPosControl = (1U << 6), AllowWeatherVaning = (1U << 7) }; // returns true if the Guided-mode-option is set (see GUID_OPTIONS) bool option_is_enabled(Option option) const; // wp controller void wp_control_start(); void wp_control_run(); void pva_control_start(); void pos_control_start(); void accel_control_start(); void velaccel_control_start(); void posvelaccel_control_start(); void takeoff_run(); void pos_control_run(); void accel_control_run(); void velaccel_control_run(); void pause_control_run(); void posvelaccel_control_run(); void set_yaw_state(bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_angle); // controls which controller is run (pos or vel): SubMode guided_mode = SubMode::TakeOff; bool send_notification; // used to send one time notification to ground station bool takeoff_complete; // true once takeoff has completed (used to trigger retracting of landing gear) // guided mode is paused or not bool _paused; }; class ModeGuidedNoGPS : public ModeGuided { public: // inherit constructor using ModeGuided::Mode; Number mode_number() const override { return Number::GUIDED_NOGPS; } bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool is_autopilot() const override { return true; } protected: const char *name() const override { return "GUIDED_NOGPS"; } const char *name4() const override { return "GNGP"; } private: }; class ModeLand : public Mode { public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::LAND; } bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return false; }; bool is_autopilot() const override { return true; } bool is_landing() const override { return true; }; #if ADVANCED_FAILSAFE // Return the type of this mode for use by advanced failsafe AP_AdvancedFailsafe_Copter::control_mode afs_mode() const override { return AP_AdvancedFailsafe_Copter::control_mode::AFS_AUTO; } #endif void do_not_use_GPS(); // returns true if LAND mode is trying to control X/Y position bool controlling_position() const { return control_position; } void set_land_pause(bool new_value) { land_pause = new_value; } protected: const char *name() const override { return "LAND"; } const char *name4() const override { return "LAND"; } private: void gps_run(); void nogps_run(); bool control_position; // true if we are using an external reference to control position uint32_t land_start_time; bool land_pause; }; class ModeLoiter : public Mode { public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::LOITER; } bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return true; }; bool is_autopilot() const override { return false; } bool has_user_takeoff(bool must_navigate) const override { return true; } bool allows_autotune() const override { return true; } #if FRAME_CONFIG == HELI_FRAME bool allows_inverted() const override { return true; }; #endif #if AC_PRECLAND_ENABLED void set_precision_loiter_enabled(bool value) { _precision_loiter_enabled = value; } #endif protected: const char *name() const override { return "LOITER"; } const char *name4() const override { return "LOIT"; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; float crosstrack_error() const override { return pos_control->crosstrack_error();} #if AC_PRECLAND_ENABLED bool do_precision_loiter(); void precision_loiter_xy(); #endif private: #if AC_PRECLAND_ENABLED bool _precision_loiter_enabled; bool _precision_loiter_active; // true if user has switched on prec loiter #endif }; class ModePosHold : public Mode { public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::POSHOLD; } bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return true; }; bool is_autopilot() const override { return false; } bool has_user_takeoff(bool must_navigate) const override { return true; } bool allows_autotune() const override { return true; } protected: const char *name() const override { return "POSHOLD"; } const char *name4() const override { return "PHLD"; } private: void update_pilot_lean_angle(float &lean_angle_filtered, float &lean_angle_raw); float mix_controls(float mix_ratio, float first_control, float second_control); void update_brake_angle_from_velocity(float &brake_angle, float velocity); void init_wind_comp_estimate(); void update_wind_comp_estimate(); void get_wind_comp_lean_angles(float &roll_angle, float &pitch_angle); void roll_controller_to_pilot_override(); void pitch_controller_to_pilot_override(); enum class RPMode { PILOT_OVERRIDE=0, // pilot is controlling this axis (i.e. roll or pitch) BRAKE, // this axis is braking towards zero BRAKE_READY_TO_LOITER, // this axis has completed braking and is ready to enter loiter mode (both modes must be this value before moving to next stage) BRAKE_TO_LOITER, // both vehicle's axis (roll and pitch) are transitioning from braking to loiter mode (braking and loiter controls are mixed) LOITER, // both vehicle axis are holding position CONTROLLER_TO_PILOT_OVERRIDE // pilot has input controls on this axis and this axis is transitioning to pilot override (other axis will transition to brake if no pilot input) }; RPMode roll_mode; RPMode pitch_mode; // pilot input related variables float pilot_roll; // pilot requested roll angle (filtered to slow returns to zero) float pilot_pitch; // pilot requested roll angle (filtered to slow returns to zero) // braking related variables struct { uint8_t time_updated_roll : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking uint8_t time_updated_pitch : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking float gain; // gain used during conversion of vehicle's velocity to lean angle during braking (calculated from rate) float roll; // target roll angle during braking periods float pitch; // target pitch angle during braking periods int16_t timeout_roll; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking int16_t timeout_pitch; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking float angle_max_roll; // maximum lean angle achieved during braking. Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time float angle_max_pitch; // maximum lean angle achieved during braking Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time int16_t to_loiter_timer; // cycles to mix brake and loiter controls in POSHOLD_TO_LOITER } brake; // loiter related variables int16_t controller_to_pilot_timer_roll; // cycles to mix controller and pilot controls in POSHOLD_CONTROLLER_TO_PILOT int16_t controller_to_pilot_timer_pitch; // cycles to mix controller and pilot controls in POSHOLD_CONTROLLER_TO_PILOT float controller_final_roll; // final roll angle from controller as we exit brake or loiter mode (used for mixing with pilot input) float controller_final_pitch; // final pitch angle from controller as we exit brake or loiter mode (used for mixing with pilot input) // wind compensation related variables Vector2f wind_comp_ef; // wind compensation in earth frame, filtered lean angles from position controller float wind_comp_roll; // roll angle to compensate for wind float wind_comp_pitch; // pitch angle to compensate for wind uint16_t wind_comp_start_timer; // counter to delay start of wind compensation for a short time after loiter is engaged int8_t wind_comp_timer; // counter to reduce wind comp roll/pitch lean angle calcs to 10hz // final output float roll; // final roll angle sent to attitude controller float pitch; // final pitch angle sent to attitude controller }; class ModeRTL : public Mode { public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::RTL; } bool init(bool ignore_checks) override; void run() override { return run(true); } void run(bool disarm_on_land); bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return false; }; bool is_autopilot() const override { return true; } bool requires_terrain_failsafe() const override { return true; } #if ADVANCED_FAILSAFE // Return the type of this mode for use by advanced failsafe AP_AdvancedFailsafe_Copter::control_mode afs_mode() const override { return AP_AdvancedFailsafe_Copter::control_mode::AFS_AUTO; } #endif // for reporting to GCS bool get_wp(Location &loc) const override; bool use_pilot_yaw() const override; bool set_speed_xy(float speed_xy_cms) override; bool set_speed_up(float speed_up_cms) override; bool set_speed_down(float speed_down_cms) override; // RTL states enum class SubMode : uint8_t { STARTING, INITIAL_CLIMB, RETURN_HOME, LOITER_AT_HOME, FINAL_DESCENT, LAND }; SubMode state() { return _state; } // this should probably not be exposed bool state_complete() const { return _state_complete; } virtual bool is_landing() const override; void restart_without_terrain(); // enum for RTL_ALT_TYPE parameter enum class RTLAltType : int8_t { RELATIVE = 0, TERRAIN = 1 }; ModeRTL::RTLAltType get_alt_type() const; protected: const char *name() const override { return "RTL"; } const char *name4() const override { return "RTL "; } // for reporting to GCS uint32_t wp_distance() const override; int32_t wp_bearing() const override; float crosstrack_error() const override { return wp_nav->crosstrack_error();} void descent_start(); void descent_run(); void land_start(); void land_run(bool disarm_on_land); void set_descent_target_alt(uint32_t alt) { rtl_path.descent_target.alt = alt; } private: void climb_start(); void return_start(); void climb_return_run(); void loiterathome_start(); void loiterathome_run(); void build_path(); void compute_return_target(); SubMode _state = SubMode::INITIAL_CLIMB; // records state of rtl (initial climb, returning home, etc) bool _state_complete = false; // set to true if the current state is completed struct { // NEU w/ Z element alt-above-ekf-origin unless use_terrain is true in which case Z element is alt-above-terrain Location origin_point; Location climb_target; Location return_target; Location descent_target; bool land; } rtl_path; // return target alt type enum class ReturnTargetAltType { RELATIVE = 0, RANGEFINDER = 1, TERRAINDATABASE = 2 }; // Loiter timer - Records how long we have been in loiter uint32_t _loiter_start_time; bool terrain_following_allowed; // enum for RTL_OPTIONS parameter enum class Options : int32_t { // First pair of bits are still available, pilot yaw was mapped to bit 2 for symmetry with auto IgnorePilotYaw = (1U << 2), }; }; class ModeSmartRTL : public ModeRTL { public: // inherit constructor using ModeRTL::Mode; Number mode_number() const override { return Number::SMART_RTL; } bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return false; } bool is_autopilot() const override { return true; } void save_position(); void exit() override; bool is_landing() const override; bool use_pilot_yaw() const override; // Safe RTL states enum class SubMode : uint8_t { WAIT_FOR_PATH_CLEANUP, PATH_FOLLOW, PRELAND_POSITION, DESCEND, LAND }; protected: const char *name() const override { return "SMARTRTL"; } const char *name4() const override { return "SRTL"; } // for reporting to GCS bool get_wp(Location &loc) const override; uint32_t wp_distance() const override; int32_t wp_bearing() const override; float crosstrack_error() const override { return wp_nav->crosstrack_error();} private: void wait_cleanup_run(); void path_follow_run(); void pre_land_position_run(); void land(); SubMode smart_rtl_state = SubMode::PATH_FOLLOW; // keep track of how long we have failed to get another return // point while following our path home. If we take too long we // may choose to land the vehicle. uint32_t path_follow_last_pop_fail_ms; // backup last popped point so that it can be restored to the path // if vehicle exits SmartRTL mode before reaching home. invalid if zero Vector3f dest_NED_backup; }; class ModeSport : public Mode { public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::SPORT; } bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return true; }; bool is_autopilot() const override { return false; } bool has_user_takeoff(bool must_navigate) const override { return !must_navigate; } protected: const char *name() const override { return "SPORT"; } const char *name4() const override { return "SPRT"; } private: }; class ModeStabilize : public Mode { public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::STABILIZE; } virtual void run() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return true; } bool allows_arming(AP_Arming::Method method) const override { return true; }; bool is_autopilot() const override { return false; } bool allows_save_trim() const override { return true; } bool allows_autotune() const override { return true; } bool allows_flip() const override { return true; } protected: const char *name() const override { return "STABILIZE"; } const char *name4() const override { return "STAB"; } private: }; #if FRAME_CONFIG == HELI_FRAME class ModeStabilize_Heli : public ModeStabilize { public: // inherit constructor using ModeStabilize::Mode; bool init(bool ignore_checks) override; void run() override; bool allows_inverted() const override { return true; }; protected: private: }; #endif class ModeSystemId : public Mode { public: ModeSystemId(void); Number mode_number() const override { return Number::SYSTEMID; } bool init(bool ignore_checks) override; void run() override; void exit() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return true; } bool allows_arming(AP_Arming::Method method) const override { return false; }; bool is_autopilot() const override { return false; } bool logs_attitude() const override { return true; } void set_magnitude(float input) { waveform_magnitude.set(input); } static const struct AP_Param::GroupInfo var_info[]; Chirp chirp_input; protected: const char *name() const override { return "SYSTEMID"; } const char *name4() const override { return "SYSI"; } private: void log_data() const; bool is_poscontrol_axis_type() const; enum class AxisType { NONE = 0, // none INPUT_ROLL = 1, // angle input roll axis is being excited INPUT_PITCH = 2, // angle pitch axis is being excited INPUT_YAW = 3, // angle yaw axis is being excited RECOVER_ROLL = 4, // angle roll axis is being excited RECOVER_PITCH = 5, // angle pitch axis is being excited RECOVER_YAW = 6, // angle yaw axis is being excited RATE_ROLL = 7, // rate roll axis is being excited RATE_PITCH = 8, // rate pitch axis is being excited RATE_YAW = 9, // rate yaw axis is being excited MIX_ROLL = 10, // mixer roll axis is being excited MIX_PITCH = 11, // mixer pitch axis is being excited MIX_YAW = 12, // mixer pitch axis is being excited MIX_THROTTLE = 13, // mixer throttle axis is being excited DISTURB_POS_LAT = 14, // lateral body axis measured position is being excited DISTURB_POS_LONG = 15, // longitudinal body axis measured position is being excited DISTURB_VEL_LAT = 16, // lateral body axis measured velocity is being excited DISTURB_VEL_LONG = 17, // longitudinal body axis measured velocity is being excited INPUT_VEL_LAT = 18, // lateral body axis commanded velocity is being excited INPUT_VEL_LONG = 19, // longitudinal body axis commanded velocity is being excited }; AP_Int8 axis; // Controls which axis are being excited. Set to non-zero to display other parameters AP_Float waveform_magnitude;// Magnitude of chirp waveform AP_Float frequency_start; // Frequency at the start of the chirp AP_Float frequency_stop; // Frequency at the end of the chirp AP_Float time_fade_in; // Time to reach maximum amplitude of chirp AP_Float time_record; // Time taken to complete the chirp waveform AP_Float time_fade_out; // Time to reach zero amplitude after chirp finishes bool att_bf_feedforward; // Setting of attitude_control->get_bf_feedforward float waveform_time; // Time reference for waveform float waveform_sample; // Current waveform sample float waveform_freq_rads; // Instantaneous waveform frequency float time_const_freq; // Time at constant frequency before chirp starts int8_t log_subsample; // Subsample multiple for logging. Vector2f target_vel; // target velocity for position controller modes Vector2f target_pos; // target positon Vector2f input_vel_last; // last cycle input velocity // System ID states enum class SystemIDModeState { SYSTEMID_STATE_STOPPED, SYSTEMID_STATE_TESTING } systemid_state; }; class ModeThrow : public Mode { public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::THROW; } bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return true; }; bool is_autopilot() const override { return false; } // Throw types enum class ThrowType { Upward = 0, Drop = 1 }; enum class PreThrowMotorState { STOPPED = 0, RUNNING = 1, }; protected: const char *name() const override { return "THROW"; } const char *name4() const override { return "THRW"; } private: bool throw_detected(); bool throw_position_good() const; bool throw_height_good() const; bool throw_attitude_good() const; // Throw stages enum ThrowModeStage { Throw_Disarmed, Throw_Detecting, Throw_Wait_Throttle_Unlimited, Throw_Uprighting, Throw_HgtStabilise, Throw_PosHold }; ThrowModeStage stage = Throw_Disarmed; ThrowModeStage prev_stage = Throw_Disarmed; uint32_t last_log_ms; bool nextmode_attempted; uint32_t free_fall_start_ms; // system time free fall was detected float free_fall_start_velz; // vertical velocity when free fall was detected }; #if MODE_TURTLE_ENABLED class ModeTurtle : public Mode { public: // inherit constructors using Mode::Mode; Number mode_number() const override { return Number::TURTLE; } bool init(bool ignore_checks) override; void run() override; void exit() override; bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return true; } bool allows_arming(AP_Arming::Method method) const override; bool is_autopilot() const override { return false; } void change_motor_direction(bool reverse); void output_to_motors() override; protected: const char *name() const override { return "TURTLE"; } const char *name4() const override { return "TRTL"; } private: void arm_motors(); void disarm_motors(); float motors_output; Vector2f motors_input; uint32_t last_throttle_warning_output_ms; }; #endif // modes below rely on Guided mode so must be declared at the end (instead of in alphabetical order) class ModeAvoidADSB : public ModeGuided { public: // inherit constructor using ModeGuided::Mode; Number mode_number() const override { return Number::AVOID_ADSB; } bool init(bool ignore_checks) override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return false; } bool is_autopilot() const override { return true; } bool set_velocity(const Vector3f& velocity_neu); protected: const char *name() const override { return "AVOID_ADSB"; } const char *name4() const override { return "AVOI"; } private: }; #if MODE_FOLLOW_ENABLED class ModeFollow : public ModeGuided { public: // inherit constructor using ModeGuided::Mode; Number mode_number() const override { return Number::FOLLOW; } bool init(bool ignore_checks) override; void exit() override; void run() override; bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return false; } bool is_autopilot() const override { return true; } protected: const char *name() const override { return "FOLLOW"; } const char *name4() const override { return "FOLL"; } // for reporting to GCS bool get_wp(Location &loc) const override; uint32_t wp_distance() const override; int32_t wp_bearing() const override; uint32_t last_log_ms; // system time of last time desired velocity was logging }; #endif class ModeZigZag : public Mode { public: ModeZigZag(void); // Inherit constructor using Mode::Mode; Number mode_number() const override { return Number::ZIGZAG; } enum class Destination : uint8_t { A, // Destination A B, // Destination B }; enum class Direction : uint8_t { FORWARD, // moving forward from the yaw direction RIGHT, // moving right from the yaw direction BACKWARD, // moving backward from the yaw direction LEFT, // moving left from the yaw direction } zigzag_direction; bool init(bool ignore_checks) override; void exit() override; void run() override; // auto control methods. copter flies grid pattern void run_auto(); void suspend_auto(); void init_auto(); bool requires_GPS() const override { return true; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return true; } bool is_autopilot() const override { return true; } bool has_user_takeoff(bool must_navigate) const override { return true; } // save current position as A or B. If both A and B have been saved move to the one specified void save_or_move_to_destination(Destination ab_dest); // return manual control to the pilot void return_to_manual_control(bool maintain_target); static const struct AP_Param::GroupInfo var_info[]; protected: const char *name() const override { return "ZIGZAG"; } const char *name4() const override { return "ZIGZ"; } uint32_t wp_distance() const override; int32_t wp_bearing() const override; float crosstrack_error() const override; private: void auto_control(); void manual_control(); bool reached_destination(); bool calculate_next_dest(Destination ab_dest, bool use_wpnav_alt, Vector3f& next_dest, bool& terrain_alt) const; void spray(bool b); bool calculate_side_dest(Vector3f& next_dest, bool& terrain_alt) const; void move_to_side(); Vector2f dest_A; // in NEU frame in cm relative to ekf origin Vector2f dest_B; // in NEU frame in cm relative to ekf origin Vector3f current_dest; // current target destination (use for resume after suspending) bool current_terr_alt; // parameters AP_Int8 _auto_enabled; // top level enable/disable control #if HAL_SPRAYER_ENABLED AP_Int8 _spray_enabled; // auto spray enable/disable #endif AP_Int8 _wp_delay; // delay for zigzag waypoint AP_Float _side_dist; // sideways distance AP_Int8 _direction; // sideways direction AP_Int16 _line_num; // total number of lines enum ZigZagState { STORING_POINTS, // storing points A and B, pilot has manual control AUTO, // after A and B defined, pilot toggle the switch from one side to the other, vehicle flies autonomously MANUAL_REGAIN // pilot toggle the switch to middle position, has manual control } stage; enum AutoState { MANUAL, // not in ZigZag Auto AB_MOVING, // moving from A to B or from B to A SIDEWAYS, // moving to sideways } auto_stage; uint32_t reach_wp_time_ms = 0; // time since vehicle reached destination (or zero if not yet reached) Destination ab_dest_stored; // store the current destination bool is_auto; // enable zigzag auto feature which is automate both AB and sideways uint16_t line_count = 0; // current line number int16_t line_num = 0; // target line number bool is_suspended; // true if zigzag auto is suspended }; #if MODE_AUTOROTATE_ENABLED class ModeAutorotate : public Mode { public: // inherit constructor using Mode::Mode; Number mode_number() const override { return Number::AUTOROTATE; } bool init(bool ignore_checks) override; void run() override; bool is_autopilot() const override { return true; } bool requires_GPS() const override { return false; } bool has_manual_throttle() const override { return false; } bool allows_arming(AP_Arming::Method method) const override { return false; }; static const struct AP_Param::GroupInfo var_info[]; protected: const char *name() const override { return "AUTOROTATE"; } const char *name4() const override { return "AROT"; } private: // --- Internal variables --- float _initial_rpm; // Head speed recorded at initiation of flight mode (RPM) float _target_head_speed; // The terget head main rotor head speed. Normalised by main rotor set point float _desired_v_z; // Desired vertical int32_t _pitch_target; // Target pitch attitude to pass to attitude controller uint32_t _entry_time_start_ms; // Time remaining until entry phase moves on to glide phase float _hs_decay; // The head accerleration during the entry phase float _bail_time; // Timer for exiting the bail out phase (s) uint32_t _bail_time_start_ms; // Time at start of bail out float _target_climb_rate_adjust;// Target vertical acceleration used during bail out phase float _target_pitch_adjust; // Target pitch rate used during bail out phase enum class Autorotation_Phase { ENTRY, SS_GLIDE, FLARE, TOUCH_DOWN, BAIL_OUT } phase_switch; enum class Navigation_Decision { USER_CONTROL_STABILISED, STRAIGHT_AHEAD, INTO_WIND, NEAREST_RALLY} nav_pos_switch; // --- Internal flags --- struct controller_flags { bool entry_initial : 1; bool ss_glide_initial : 1; bool flare_initial : 1; bool touch_down_initial : 1; bool straight_ahead_initial : 1; bool level_initial : 1; bool break_initial : 1; bool bail_out_initial : 1; bool bad_rpm : 1; } _flags; struct message_flags { bool bad_rpm : 1; } _msg_flags; //--- Internal functions --- void warning_message(uint8_t message_n); //Handles output messages to the terminal }; #endif