/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* main Rover class, containing all vehicle specific state */ #pragma once #include #include // Libraries #include #include #include #include #include // interface and maths for accelerometer calibration #include // ArduPilot Mega DCM Library #include // needed for AHRS build #include #include // Battery monitor library #include #include // Camera triggering #include // ArduPilot Mega Magnetometer Library #include // Compass declination library #include // Inertial Sensor (uncalibated IMU) Library #include #include // ArduPilot Mega Vector/Matrix math Library #include // Mission command library #include // Camera/Antenna mount #include #include #include #include // Optical Flow library #include #include // Range finder library #include // RC input mapping library #include // main loop scheduler #include // statistics library #include #include // needed for AHRS build #include #include #include #include #include #include #include // Mode Filter from Filter library #include // Filter library - butterworth filter #include // Filter library #include #include // Mode Filter from Filter library #include #include #include #include #include #include #include #include #include #include #ifdef ENABLE_SCRIPTING #include #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #endif // Local modules #include "mode.h" #include "AP_Arming.h" #include "sailboat.h" // Configuration #include "config.h" #include "defines.h" #if ADVANCED_FAILSAFE == ENABLED #include "afs_rover.h" #endif #include "Parameters.h" #include "GCS_Mavlink.h" #include "GCS_Rover.h" #include "AP_Rally.h" #include "RC_Channel.h" // RC Channel Library class Rover : public AP_Vehicle { public: friend class GCS_MAVLINK_Rover; friend class Parameters; friend class ParametersG2; friend class AP_Rally_Rover; friend class AP_Arming_Rover; #if ADVANCED_FAILSAFE == ENABLED friend class AP_AdvancedFailsafe_Rover; #endif friend class GCS_Rover; friend class Mode; friend class ModeAcro; friend class ModeAuto; friend class ModeGuided; friend class ModeHold; friend class ModeLoiter; friend class ModeSteering; friend class ModeManual; friend class ModeRTL; friend class ModeSmartRTL; friend class ModeFollow; friend class ModeSimple; friend class RC_Channel_Rover; friend class RC_Channels_Rover; friend class Sailboat; Rover(void); private: // must be the first AP_Param variable declared to ensure its // constructor runs before the constructors of the other AP_Param // variables AP_Param param_loader; // all settable parameters Parameters g; ParametersG2 g2; // mapping between input channels RCMapper rcmap; // primary control channels RC_Channel *channel_steer; RC_Channel *channel_throttle; RC_Channel *channel_lateral; RC_Channel *channel_roll; RC_Channel *channel_pitch; RC_Channel *channel_walking_height; AP_Logger logger; // flight modes convenience array AP_Int8 *modes; const uint8_t num_modes = 6; // AP_RPM Module AP_RPM rpm_sensor; // Arming/Disarming management class AP_Arming_Rover arming; AP_L1_Control L1_controller{ahrs, nullptr}; OpticalFlow optflow; #if OSD_ENABLED || OSD_PARAM_ENABLED AP_OSD osd; #endif #if CONFIG_HAL_BOARD == HAL_BOARD_SITL SITL::SIM sitl; #endif // GCS handling GCS_Rover _gcs; // avoid using this; use gcs() GCS_Rover &gcs() { return _gcs; } // RC Channels: RC_Channels_Rover &rc() { return g2.rc_channels; } // The rover's current location struct Location current_loc; // Camera #if CAMERA == ENABLED AP_Camera camera{MASK_LOG_CAMERA}; #endif // Camera/Antenna mount tracking and stabilisation stuff #if HAL_MOUNT_ENABLED AP_Mount camera_mount; #endif // true if initialisation has completed bool initialised; // This is the state of the flight control system // There are multiple states defined such as MANUAL, AUTO, ... Mode *control_mode; // Used to maintain the state of the previous control switch position // This is set to -1 when we need to re-read the switch uint8_t oldSwitchPosition; // structure for holding failsafe state struct { uint8_t bits; // bit flags of failsafes that have started (but not necessarily triggered an action) uint32_t start_time; // start time of the earliest failsafe uint8_t triggered; // bit flags of failsafes that have triggered an action uint32_t last_valid_rc_ms; // system time of most recent RC input from pilot bool ekf; } failsafe; // true if we have a position estimate from AHRS bool have_position; // range finder last update (used for DPTH logging) uint32_t rangefinder_last_reading_ms; // Ground speed // The amount current ground speed is below min ground speed. meters per second float ground_speed; // Battery Sensors AP_BattMonitor battery{MASK_LOG_CURRENT, FUNCTOR_BIND_MEMBER(&Rover::handle_battery_failsafe, void, const char*, const int8_t), _failsafe_priorities}; // flyforward timer uint32_t flyforward_start_ms; static const AP_Scheduler::Task scheduler_tasks[]; static const AP_Param::Info var_info[]; static const LogStructure log_structure[]; // time that rudder/steering arming has been running uint32_t rudder_arm_timer; // latest wheel encoder values float wheel_encoder_last_distance_m[WHEELENCODER_MAX_INSTANCES]; // total distance recorded by wheel encoder (for reporting to GCS) bool wheel_encoder_initialised; // true once arrays below have been initialised to sensors initial values float wheel_encoder_last_angle_rad[WHEELENCODER_MAX_INSTANCES]; // distance in radians at time of last update to EKF uint32_t wheel_encoder_last_reading_ms[WHEELENCODER_MAX_INSTANCES]; // system time of last ping from each encoder uint8_t wheel_encoder_last_index_sent; // index of the last wheel encoder sent to the EKF // True when we are doing motor test bool motor_test; ModeInitializing mode_initializing; ModeHold mode_hold; ModeManual mode_manual; ModeAcro mode_acro; ModeGuided mode_guided; ModeAuto mode_auto; ModeLoiter mode_loiter; ModeSteering mode_steering; ModeRTL mode_rtl; ModeSmartRTL mode_smartrtl; ModeFollow mode_follow; ModeSimple mode_simple; // cruise throttle and speed learning typedef struct { LowPassFilterFloat speed_filt{2.0f}; LowPassFilterFloat throttle_filt{2.0f}; uint32_t learn_start_ms; uint32_t log_count; } cruise_learn_t; cruise_learn_t cruise_learn; private: // Rover.cpp #ifdef ENABLE_SCRIPTING bool set_target_location(const Location& target_loc) override; bool set_target_velocity_NED(const Vector3f& vel_ned) override; bool set_steering_and_throttle(float steering, float throttle) override; bool get_control_output(AP_Vehicle::ControlOutput control_output, float &control_value) override; #endif // ENABLE_SCRIPTING void stats_update(); void ahrs_update(); void gcs_failsafe_check(void); void update_logging1(void); void update_logging2(void); void one_second_loop(void); void update_current_mode(void); void update_mission(void); // balance_bot.cpp void balancebot_pitch_control(float &throttle); bool is_balancebot() const; // commands.cpp bool set_home_to_current_location(bool lock) WARN_IF_UNUSED; bool set_home(const Location& loc, bool lock) WARN_IF_UNUSED; void update_home(); // crash_check.cpp void crash_check(); // cruise_learn.cpp void cruise_learn_start(); void cruise_learn_update(); void cruise_learn_complete(); void log_write_cruise_learn() const; // ekf_check.cpp void ekf_check(); bool ekf_over_threshold(); bool ekf_position_ok(); void failsafe_ekf_event(); void failsafe_ekf_off_event(void); // failsafe.cpp void failsafe_trigger(uint8_t failsafe_type, const char* type_str, bool on); void handle_battery_failsafe(const char* type_str, const int8_t action); #if ADVANCED_FAILSAFE == ENABLED void afs_fs_check(void); #endif // fence.cpp void fence_check(); // GCS_Mavlink.cpp void send_wheel_encoder_distance(mavlink_channel_t chan); // Log.cpp void Log_Write_Attitude(); void Log_Write_Depth(); void Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target); void Log_Write_Nav_Tuning(); void Log_Write_Sail(); void Log_Write_Startup(uint8_t type); void Log_Write_Steering(); void Log_Write_Throttle(); void Log_Write_RC(void); void Log_Write_Vehicle_Startup_Messages(); void Log_Read(uint16_t log_num, uint16_t start_page, uint16_t end_page); void log_init(void); // mode.cpp Mode *mode_from_mode_num(enum Mode::Number num); // Parameters.cpp void load_parameters(void) override; // radio.cpp void set_control_channels(void) override; void init_rc_in(); void rudder_arm_disarm_check(); void read_radio(); void radio_failsafe_check(uint16_t pwm); bool trim_radio(); // sensors.cpp void update_compass(void); void compass_save(void); void update_wheel_encoder(); void read_rangefinders(void); void read_airspeed(); void rpm_update(void); // Steering.cpp void set_servos(void); // Rover.cpp void get_scheduler_tasks(const AP_Scheduler::Task *&tasks, uint8_t &task_count, uint32_t &log_bit) override; // system.cpp void init_ardupilot() override; void startup_ground(void); void update_ahrs_flyforward(); bool set_mode(Mode &new_mode, ModeReason reason); bool set_mode(const uint8_t new_mode, ModeReason reason) override; uint8_t get_mode() const override { return (uint8_t)control_mode->mode_number(); } void startup_INS_ground(void); void notify_mode(const Mode *new_mode); uint8_t check_digital_pin(uint8_t pin); bool should_log(uint32_t mask); bool is_boat() const; // vehicle specific waypoint info helpers bool get_wp_distance_m(float &distance) const override; bool get_wp_bearing_deg(float &bearing) const override; bool get_wp_crosstrack_error_m(float &xtrack_error) const override; enum Failsafe_Action { Failsafe_Action_None = 0, Failsafe_Action_RTL = 1, Failsafe_Action_Hold = 2, Failsafe_Action_SmartRTL = 3, Failsafe_Action_SmartRTL_Hold = 4, Failsafe_Action_Terminate = 5 }; enum class Failsafe_Options : uint32_t { Failsafe_Option_Active_In_Hold = (1<<0) }; static constexpr int8_t _failsafe_priorities[] = { Failsafe_Action_Terminate, Failsafe_Action_Hold, Failsafe_Action_RTL, Failsafe_Action_SmartRTL_Hold, Failsafe_Action_SmartRTL, Failsafe_Action_None, -1 // the priority list must end with a sentinel of -1 }; static_assert(_failsafe_priorities[ARRAY_SIZE(_failsafe_priorities) - 1] == -1, "_failsafe_priorities is missing the sentinel"); public: void failsafe_check(); // Motor test void motor_test_output(); bool mavlink_motor_test_check(const GCS_MAVLINK &gcs_chan, bool check_rc, AP_MotorsUGV::motor_test_order motor_instance, uint8_t throttle_type, int16_t throttle_value); MAV_RESULT mavlink_motor_test_start(const GCS_MAVLINK &gcs_chan, AP_MotorsUGV::motor_test_order motor_instance, uint8_t throttle_type, int16_t throttle_value, float timeout_sec); void motor_test_stop(); // frame type uint8_t get_frame_type() const { return g2.frame_type.get(); } AP_WheelRateControl& get_wheel_rate_control() { return g2.wheel_rate_control; } // Simple mode float simple_sin_yaw; }; extern Rover rover; using AP_HAL::millis; using AP_HAL::micros;