/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Baro_BMP280.h" #if AP_BARO_BMP280_ENABLED #include #include extern const AP_HAL::HAL &hal; #define BMP280_MODE_SLEEP 0 #define BMP280_MODE_FORCED 1 #define BMP280_MODE_NORMAL 3 #define BMP280_MODE BMP280_MODE_NORMAL #define BMP280_OVERSAMPLING_1 1 #define BMP280_OVERSAMPLING_2 2 #define BMP280_OVERSAMPLING_4 3 #define BMP280_OVERSAMPLING_8 4 #define BMP280_OVERSAMPLING_16 5 #define BMP280_OVERSAMPLING_P BMP280_OVERSAMPLING_16 #define BMP280_OVERSAMPLING_T BMP280_OVERSAMPLING_2 #define BMP280_FILTER_COEFFICIENT 2 #define BMP280_ID 0x58 #define BME280_ID 0x60 #define BMP280_REG_CALIB 0x88 #define BMP280_REG_ID 0xD0 #define BMP280_REG_RESET 0xE0 #define BMP280_REG_STATUS 0xF3 #define BMP280_REG_CTRL_MEAS 0xF4 #define BMP280_REG_CONFIG 0xF5 #define BMP280_REG_DATA 0xF7 AP_Baro_BMP280::AP_Baro_BMP280(AP_Baro &baro, AP_HAL::OwnPtr dev) : AP_Baro_Backend(baro) , _dev(std::move(dev)) { } AP_Baro_Backend *AP_Baro_BMP280::probe(AP_Baro &baro, AP_HAL::OwnPtr dev) { if (!dev) { return nullptr; } AP_Baro_BMP280 *sensor = NEW_NOTHROW AP_Baro_BMP280(baro, std::move(dev)); if (!sensor || !sensor->_init()) { delete sensor; return nullptr; } return sensor; } bool AP_Baro_BMP280::_init() { if (!_dev) { return false; } WITH_SEMAPHORE(_dev->get_semaphore()); _dev->set_speed(AP_HAL::Device::SPEED_HIGH); uint8_t whoami; if (!_dev->read_registers(BMP280_REG_ID, &whoami, 1) || (whoami != BME280_ID && whoami != BMP280_ID)) { // not a BMP280 or BME280 return false; } // read the calibration data uint8_t buf[24]; _dev->read_registers(BMP280_REG_CALIB, buf, sizeof(buf)); _t1 = ((int16_t)buf[1] << 8) | buf[0]; _t2 = ((int16_t)buf[3] << 8) | buf[2]; _t3 = ((int16_t)buf[5] << 8) | buf[4]; _p1 = ((int16_t)buf[7] << 8) | buf[6]; _p2 = ((int16_t)buf[9] << 8) | buf[8]; _p3 = ((int16_t)buf[11] << 8) | buf[10]; _p4 = ((int16_t)buf[13] << 8) | buf[12]; _p5 = ((int16_t)buf[15] << 8) | buf[14]; _p6 = ((int16_t)buf[17] << 8) | buf[16]; _p7 = ((int16_t)buf[19] << 8) | buf[18]; _p8 = ((int16_t)buf[21] << 8) | buf[20]; _p9 = ((int16_t)buf[23] << 8) | buf[22]; // SPI write needs bit mask uint8_t mask = 0xFF; if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) { mask = 0x7F; } _dev->setup_checked_registers(2, 20); _dev->write_register((BMP280_REG_CTRL_MEAS & mask), (BMP280_OVERSAMPLING_T << 5) | (BMP280_OVERSAMPLING_P << 2) | BMP280_MODE, true); _dev->write_register((BMP280_REG_CONFIG & mask), BMP280_FILTER_COEFFICIENT << 2, true); _instance = _frontend.register_sensor(); _dev->set_device_type(DEVTYPE_BARO_BMP280); set_bus_id(_instance, _dev->get_bus_id()); // request 50Hz update _dev->register_periodic_callback(20 * AP_USEC_PER_MSEC, FUNCTOR_BIND_MEMBER(&AP_Baro_BMP280::_timer, void)); return true; } // accumulate a new sensor reading void AP_Baro_BMP280::_timer(void) { uint8_t buf[6]; _dev->read_registers(BMP280_REG_DATA, buf, sizeof(buf)); _update_temperature((buf[3] << 12) | (buf[4] << 4) | (buf[5] >> 4)); _update_pressure((buf[0] << 12) | (buf[1] << 4) | (buf[2] >> 4)); _dev->check_next_register(); } // transfer data to the frontend void AP_Baro_BMP280::update(void) { WITH_SEMAPHORE(_sem); if (_pressure_count == 0) { return; } _copy_to_frontend(_instance, _pressure_sum/_pressure_count, _temperature); _pressure_count = 0; _pressure_sum = 0; } // calculate temperature void AP_Baro_BMP280::_update_temperature(int32_t temp_raw) { int32_t var1, var2, t; // according to datasheet page 22 var1 = ((((temp_raw >> 3) - ((int32_t)_t1 << 1))) * ((int32_t)_t2)) >> 11; var2 = (((((temp_raw >> 4) - ((int32_t)_t1)) * ((temp_raw >> 4) - ((int32_t)_t1))) >> 12) * ((int32_t)_t3)) >> 14; _t_fine = var1 + var2; t = (_t_fine * 5 + 128) >> 8; const float temp = ((float)t) * 0.01f; WITH_SEMAPHORE(_sem); _temperature = temp; } // calculate pressure void AP_Baro_BMP280::_update_pressure(int32_t press_raw) { int64_t var1, var2, p; // according to datasheet page 22 var1 = ((int64_t)_t_fine) - 128000; var2 = var1 * var1 * (int64_t)_p6; var2 = var2 + ((var1 * (int64_t)_p5) << 17); var2 = var2 + (((int64_t)_p4) << 35); var1 = ((var1 * var1 * (int64_t)_p3) >> 8) + ((var1 * (int64_t)_p2) << 12); var1 = (((((int64_t)1) << 47) + var1)) * ((int64_t)_p1) >> 33; if (var1 == 0) { return; } p = 1048576 - press_raw; p = (((p << 31) - var2) * 3125) / var1; var1 = (((int64_t)_p9) * (p >> 13) * (p >> 13)) >> 25; var2 = (((int64_t)_p8) * p) >> 19; p = ((p + var1 + var2) >> 8) + (((int64_t)_p7) << 4); const float press = (float)p / 256.0f; if (!pressure_ok(press)) { return; } WITH_SEMAPHORE(_sem); _pressure_sum += press; _pressure_count++; } #endif // AP_BARO_BMP280_ENABLED