/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* main logic for servo control */ #include "Plane.h" #include /***************************************** * Throttle slew limit *****************************************/ void Plane::throttle_slew_limit(void) { uint8_t slewrate = aparm.throttle_slewrate; if (control_mode==AUTO) { if (auto_state.takeoff_complete == false && g.takeoff_throttle_slewrate != 0) { slewrate = g.takeoff_throttle_slewrate; } else if (landing.get_throttle_slewrate() != 0 && flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) { slewrate = landing.get_throttle_slewrate(); } } // if slew limit rate is set to zero then do not slew limit if (slewrate) { SRV_Channels::limit_slew_rate(SRV_Channel::k_throttle, slewrate, G_Dt); } } /* We want to suppress the throttle if we think we are on the ground and in an autopilot controlled throttle mode. Disable throttle if following conditions are met: * 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher * AND * 2 - Our reported altitude is within 10 meters of the home altitude. * 3 - Our reported speed is under 5 meters per second. * 4 - We are not performing a takeoff in Auto mode or takeoff speed/accel not yet reached * OR * 5 - Home location is not set * OR * 6- Landing does not want to allow throttle */ bool Plane::suppress_throttle(void) { #if PARACHUTE == ENABLED if (auto_throttle_mode && parachute.release_initiated()) { // throttle always suppressed in auto-throttle modes after parachute release initiated throttle_suppressed = true; return true; } #endif if (landing.is_throttle_suppressed()) { return true; } if (!throttle_suppressed) { // we've previously met a condition for unsupressing the throttle return false; } if (!auto_throttle_mode) { // the user controls the throttle throttle_suppressed = false; return false; } if (control_mode==AUTO && g.auto_fbw_steer == 42) { // user has throttle control return false; } bool gps_movement = (gps.status() >= AP_GPS::GPS_OK_FIX_2D && gps.ground_speed() >= 5); if (control_mode==AUTO && auto_state.takeoff_complete == false) { uint32_t launch_duration_ms = ((int32_t)g.takeoff_throttle_delay)*100 + 2000; if (is_flying() && millis() - started_flying_ms > MAX(launch_duration_ms, 5000U) && // been flying >5s in any mode adjusted_relative_altitude_cm() > 500 && // are >5m above AGL/home labs(ahrs.pitch_sensor) < 3000 && // not high pitch, which happens when held before launch gps_movement) { // definite gps movement // we're already flying, do not suppress the throttle. We can get // stuck in this condition if we reset a mission and cmd 1 is takeoff // but we're currently flying around below the takeoff altitude throttle_suppressed = false; return false; } if (auto_takeoff_check()) { // we're in auto takeoff throttle_suppressed = false; auto_state.baro_takeoff_alt = barometer.get_altitude(); return false; } // keep throttle suppressed return true; } if (fabsf(relative_altitude) >= 10.0f) { // we're more than 10m from the home altitude throttle_suppressed = false; return false; } if (gps_movement) { // if we have an airspeed sensor, then check it too, and // require 5m/s. This prevents throttle up due to spiky GPS // groundspeed with bad GPS reception if ((!ahrs.airspeed_sensor_enabled()) || airspeed.get_airspeed() >= 5) { // we're moving at more than 5 m/s throttle_suppressed = false; return false; } } if (quadplane.is_flying()) { throttle_suppressed = false; return false; } // throttle remains suppressed return true; } /* implement a software VTail or elevon mixer. There are 4 different mixing modes */ void Plane::channel_output_mixer_pwm(uint8_t mixing_type, uint16_t & chan1_out, uint16_t & chan2_out) const { int16_t c1, c2; int16_t v1, v2; // first get desired elevator and rudder as -500..500 values c1 = chan1_out - 1500; c2 = chan2_out - 1500; // apply MIXING_OFFSET to input channels using long-integer version // of formula: x = x * (g.mixing_offset/100.0 + 1.0) // -100 => 2x on 'c1', 100 => 2x on 'c2' if (g.mixing_offset < 0) { c1 = (int16_t)(((int32_t)c1) * (-g.mixing_offset+100) / 100); } else if (g.mixing_offset > 0) { c2 = (int16_t)(((int32_t)c2) * (g.mixing_offset+100) / 100); } v1 = (c1 - c2) * g.mixing_gain; v2 = (c1 + c2) * g.mixing_gain; // now map to mixed output switch (mixing_type) { case MIXING_DISABLED: return; case MIXING_UPUP: break; case MIXING_UPDN: v2 = -v2; break; case MIXING_DNUP: v1 = -v1; break; case MIXING_DNDN: v1 = -v1; v2 = -v2; break; case MIXING_UPUP_SWP: std::swap(v1, v2); break; case MIXING_UPDN_SWP: v2 = -v2; std::swap(v1, v2); break; case MIXING_DNUP_SWP: v1 = -v1; std::swap(v1, v2); break; case MIXING_DNDN_SWP: v1 = -v1; v2 = -v2; std::swap(v1, v2); break; } // scale for a 1500 center and 900..2100 range, symmetric v1 = constrain_int16(v1, -600, 600); v2 = constrain_int16(v2, -600, 600); chan1_out = 1500 + v1; chan2_out = 1500 + v2; } /* output mixer based on two channel output types */ void Plane::channel_output_mixer(uint8_t mixing_type, SRV_Channel::Aux_servo_function_t func1, SRV_Channel::Aux_servo_function_t func2) { SRV_Channel *chan1, *chan2; if (!(chan1 = SRV_Channels::get_channel_for(func1)) || !(chan2 = SRV_Channels::get_channel_for(func2))) { return; } uint16_t chan1_out, chan2_out; chan1_out = chan1->get_output_pwm(); chan2_out = chan2->get_output_pwm(); channel_output_mixer_pwm(mixing_type, chan1_out, chan2_out); chan1->set_output_pwm(chan1_out); chan2->set_output_pwm(chan2_out); } /* mixer for elevon and vtail channels setup using designated servo function values. This mixer operates purely on scaled values, allowing the user to trim and limit individual servos using the SERVOn_* parameters */ void Plane::channel_function_mixer(SRV_Channel::Aux_servo_function_t func1_in, SRV_Channel::Aux_servo_function_t func2_in, SRV_Channel::Aux_servo_function_t func1_out, SRV_Channel::Aux_servo_function_t func2_out) { // the order is setup so that non-reversed servos go "up", and // func1 is the "left" channel. Users can adjust with channel // reversal as needed float in1 = SRV_Channels::get_output_scaled(func1_in); float in2 = SRV_Channels::get_output_scaled(func2_in); float out1 = constrain_float((in2 - in1) * g.mixing_gain, -4500, 4500); float out2 = constrain_float((in2 + in1) * g.mixing_gain, -4500, 4500); SRV_Channels::set_output_scaled(func1_out, out1); SRV_Channels::set_output_scaled(func2_out, out2); } /* setup flaperon output channels */ void Plane::flaperon_update(int8_t flap_percent) { if (!SRV_Channels::function_assigned(SRV_Channel::k_flaperon_left) && !SRV_Channels::function_assigned(SRV_Channel::k_flaperon_right)) { return; } /* flaperons are implemented as a mixer between aileron and a percentage of flaps. Flap input can come from a manual channel or from auto flaps. */ float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron); float flaperon_left = constrain_float(aileron + flap_percent * 45, -4500, 4500); float flaperon_right = constrain_float(aileron - flap_percent * 45, -4500, 4500); SRV_Channels::set_output_scaled(SRV_Channel::k_flaperon_left, flaperon_left); SRV_Channels::set_output_scaled(SRV_Channel::k_flaperon_right, flaperon_right); } /* setup differential spoiler output channels Differential spoilers are a type of elevon that is split on each wing to give yaw control, mixed from rudder */ void Plane::dspoiler_update(void) { // just check we have a left dspoiler, and if so calculate all outputs if (!SRV_Channels::function_assigned(SRV_Channel::k_dspoilerLeft1)) { return; } float elevon_left = SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_left); float elevon_right = SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_right); float rudder = SRV_Channels::get_output_scaled(SRV_Channel::k_rudder); float dspoiler1_left = elevon_left; float dspoiler2_left = elevon_left; float dspoiler1_right = elevon_right; float dspoiler2_right = elevon_right; if (rudder > 0) { // apply rudder to right wing dspoiler1_right = constrain_float(elevon_right + rudder, -4500, 4500); dspoiler2_right = constrain_float(elevon_right - rudder, -4500, 4500); } else { // apply rudder to left wing dspoiler1_left = constrain_float(elevon_left + rudder, -4500, 4500); dspoiler2_left = constrain_float(elevon_left - rudder, -4500, 4500); } SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerLeft1, dspoiler1_left); SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerLeft2, dspoiler2_left); SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerRight1, dspoiler1_right); SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerRight2, dspoiler2_right); } /* setup servos for idle mode Idle mode is used during balloon launch to keep servos still, apart from occasional wiggle to prevent freezing up */ void Plane::set_servos_idle(void) { if (auto_state.idle_wiggle_stage == 0) { SRV_Channels::output_trim_all(); return; } int16_t servo_value = 0; // move over full range for 2 seconds auto_state.idle_wiggle_stage += 2; if (auto_state.idle_wiggle_stage < 50) { servo_value = auto_state.idle_wiggle_stage * (4500 / 50); } else if (auto_state.idle_wiggle_stage < 100) { servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50); } else if (auto_state.idle_wiggle_stage < 150) { servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50); } else if (auto_state.idle_wiggle_stage < 200) { servo_value = (auto_state.idle_wiggle_stage-200) * (4500 / 50); } else { auto_state.idle_wiggle_stage = 0; } SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, servo_value); SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, servo_value); SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, servo_value); SRV_Channels::set_output_to_trim(SRV_Channel::k_throttle); SRV_Channels::output_ch_all(); } /* pass through channels in manual mode */ void Plane::set_servos_manual_passthrough(void) { SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, channel_roll->get_control_in_zero_dz()); SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, channel_pitch->get_control_in_zero_dz()); SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, channel_rudder->get_control_in_zero_dz()); SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, channel_throttle->get_control_in_zero_dz()); } /* calculate any throttle limits based on the watt limiter */ void Plane::throttle_watt_limiter(int8_t &min_throttle, int8_t &max_throttle) { uint32_t now = millis(); if (battery.overpower_detected()) { // overpower detected, cut back on the throttle if we're maxing it out by calculating a limiter value // throttle limit will attack by 10% per second if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) > 0 && // demanding too much positive thrust throttle_watt_limit_max < max_throttle - 25 && now - throttle_watt_limit_timer_ms >= 1) { // always allow for 25% throttle available regardless of battery status throttle_watt_limit_timer_ms = now; throttle_watt_limit_max++; } else if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < 0 && min_throttle < 0 && // reverse thrust is available throttle_watt_limit_min < -(min_throttle) - 25 && now - throttle_watt_limit_timer_ms >= 1) { // always allow for 25% throttle available regardless of battery status throttle_watt_limit_timer_ms = now; throttle_watt_limit_min++; } } else if (now - throttle_watt_limit_timer_ms >= 1000) { // it has been 1 second since last over-current, check if we can resume higher throttle. // this throttle release is needed to allow raising the max_throttle as the battery voltage drains down // throttle limit will release by 1% per second if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) > throttle_watt_limit_max && // demanding max forward thrust throttle_watt_limit_max > 0) { // and we're currently limiting it throttle_watt_limit_timer_ms = now; throttle_watt_limit_max--; } else if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < throttle_watt_limit_min && // demanding max negative thrust throttle_watt_limit_min > 0) { // and we're limiting it throttle_watt_limit_timer_ms = now; throttle_watt_limit_min--; } } max_throttle = constrain_int16(max_throttle, 0, max_throttle - throttle_watt_limit_max); if (min_throttle < 0) { min_throttle = constrain_int16(min_throttle, min_throttle + throttle_watt_limit_min, 0); } } /* setup output channels all non-manual modes */ void Plane::set_servos_controlled(void) { if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) { // allow landing to override servos if it would like to landing.override_servos(); } // convert 0 to 100% (or -100 to +100) into PWM int8_t min_throttle = aparm.throttle_min.get(); int8_t max_throttle = aparm.throttle_max.get(); if (min_throttle < 0 && !allow_reverse_thrust()) { // reverse thrust is available but inhibited. min_throttle = 0; } if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_TAKEOFF || flight_stage == AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND) { if(aparm.takeoff_throttle_max != 0) { max_throttle = aparm.takeoff_throttle_max; } else { max_throttle = aparm.throttle_max; } } else if (landing.is_flaring()) { min_throttle = 0; } // apply watt limiter throttle_watt_limiter(min_throttle, max_throttle); SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, constrain_int16(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle), min_throttle, max_throttle)); if (!hal.util->get_soft_armed()) { if (arming.arming_required() == AP_Arming::YES_ZERO_PWM) { SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); } else { SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0); } } else if (suppress_throttle()) { // throttle is suppressed in auto mode SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0); if (g.throttle_suppress_manual) { // manual pass through of throttle while throttle is suppressed SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, channel_throttle->get_control_in_zero_dz()); } } else if (g.throttle_passthru_stabilize && (control_mode == STABILIZE || control_mode == TRAINING || control_mode == ACRO || control_mode == FLY_BY_WIRE_A || control_mode == AUTOTUNE) && !failsafe.ch3_counter) { // manual pass through of throttle while in FBWA or // STABILIZE mode with THR_PASS_STAB set SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, channel_throttle->get_control_in_zero_dz()); } else if ((control_mode == GUIDED || control_mode == AVOID_ADSB) && guided_throttle_passthru) { // manual pass through of throttle while in GUIDED SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, channel_throttle->get_control_in_zero_dz()); } else if (quadplane.in_vtol_mode()) { // ask quadplane code for forward throttle SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, quadplane.forward_throttle_pct()); } // suppress throttle when soaring is active if ((control_mode == FLY_BY_WIRE_B || control_mode == CRUISE || control_mode == AUTO || control_mode == LOITER) && g2.soaring_controller.is_active() && g2.soaring_controller.get_throttle_suppressed()) { SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0); } } /* setup flap outputs */ void Plane::set_servos_flaps(void) { // Auto flap deployment int8_t auto_flap_percent = 0; int8_t manual_flap_percent = 0; // work out any manual flap input RC_Channel *flapin = RC_Channels::rc_channel(g.flapin_channel-1); if (flapin != nullptr && !failsafe.ch3_failsafe && failsafe.ch3_counter == 0) { flapin->input(); manual_flap_percent = flapin->percent_input(); } if (auto_throttle_mode) { int16_t flapSpeedSource = 0; if (ahrs.airspeed_sensor_enabled()) { flapSpeedSource = target_airspeed_cm * 0.01f; } else { flapSpeedSource = aparm.throttle_cruise; } if (g.flap_2_speed != 0 && flapSpeedSource <= g.flap_2_speed) { auto_flap_percent = g.flap_2_percent; } else if ( g.flap_1_speed != 0 && flapSpeedSource <= g.flap_1_speed) { auto_flap_percent = g.flap_1_percent; } //else flaps stay at default zero deflection if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND && landing.get_flap_percent() != 0) { auto_flap_percent = landing.get_flap_percent(); } /* special flap levels for takeoff and landing. This works better than speed based flaps as it leads to less possibility of oscillation */ if (control_mode == AUTO) { switch (flight_stage) { case AP_Vehicle::FixedWing::FLIGHT_TAKEOFF: case AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND: if (g.takeoff_flap_percent != 0) { auto_flap_percent = g.takeoff_flap_percent; } break; case AP_Vehicle::FixedWing::FLIGHT_NORMAL: if (g.takeoff_flap_percent != 0 && in_preLaunch_flight_stage()) { // TODO: move this to a new FLIGHT_PRE_TAKEOFF stage auto_flap_percent = g.takeoff_flap_percent; } break; default: break; } } } // manual flap input overrides auto flap input if (abs(manual_flap_percent) > auto_flap_percent) { auto_flap_percent = manual_flap_percent; } SRV_Channels::set_output_scaled(SRV_Channel::k_flap_auto, auto_flap_percent); SRV_Channels::set_output_scaled(SRV_Channel::k_flap, manual_flap_percent); if (g.flap_slewrate) { SRV_Channels::limit_slew_rate(SRV_Channel::k_flap_auto, g.flap_slewrate, G_Dt); SRV_Channels::limit_slew_rate(SRV_Channel::k_flap, g.flap_slewrate, G_Dt); } // output to flaperons, if any flaperon_update(auto_flap_percent); } /* apply vtail and elevon mixers the rewrites radio_out for the corresponding channels */ void Plane::servo_output_mixers(void) { // mix elevons and vtail channels channel_function_mixer(SRV_Channel::k_aileron, SRV_Channel::k_elevator, SRV_Channel::k_elevon_left, SRV_Channel::k_elevon_right); channel_function_mixer(SRV_Channel::k_rudder, SRV_Channel::k_elevator, SRV_Channel::k_vtail_right, SRV_Channel::k_vtail_left); // implement differential spoilers dspoiler_update(); } /* support for twin-engine planes */ void Plane::servos_twin_engine_mix(void) { float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle); float rud_gain = float(plane.g2.rudd_dt_gain) / 100; float rudder = rud_gain * SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) / float(SERVO_MAX); float throttle_left, throttle_right; if (throttle < 0 && aparm.throttle_min < 0) { // doing reverse thrust throttle_left = constrain_float(throttle + 50 * rudder, -100, 0); throttle_right = constrain_float(throttle - 50 * rudder, -100, 0); } else if (throttle <= 0) { throttle_left = throttle_right = 0; } else { // doing forward thrust throttle_left = constrain_float(throttle + 50 * rudder, 0, 100); throttle_right = constrain_float(throttle - 50 * rudder, 0, 100); } SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle_left); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle_right); } /* Set the flight control servos based on the current calculated values This function operates by first building up output values for channels using set_servo() and set_radio_out(). Using set_radio_out() is for when a raw PWM value of output is given which does not depend on any output scaling. Using set_servo() is for when scaling and mixing will be needed. Finally servos_output() is called to push the final PWM values for output channels */ void Plane::set_servos(void) { // start with output corked. the cork is released when we run // servos_output(), which is run from all code paths in this // function hal.rcout->cork(); // this is to allow the failsafe module to deliberately crash // the plane. Only used in extreme circumstances to meet the // OBC rules if (afs.should_crash_vehicle()) { afs.terminate_vehicle(); return; } // do any transition updates for quadplane quadplane.update(); if (control_mode == AUTO && auto_state.idle_mode) { // special handling for balloon launch set_servos_idle(); servos_output(); return; } /* see if we are doing ground steering. */ if (!steering_control.ground_steering) { // we are not at an altitude for ground steering. Set the nose // wheel to the rudder just in case the barometer has drifted // a lot steering_control.steering = steering_control.rudder; } else if (!SRV_Channels::function_assigned(SRV_Channel::k_steering)) { // we are within the ground steering altitude but don't have a // dedicated steering channel. Set the rudder to the ground // steering output steering_control.rudder = steering_control.steering; } SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, steering_control.rudder); // clear ground_steering to ensure manual control if the yaw stabilizer doesn't run steering_control.ground_steering = false; if (control_mode == TRAINING) { steering_control.rudder = channel_rudder->get_control_in(); } SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, steering_control.rudder); SRV_Channels::set_output_scaled(SRV_Channel::k_steering, steering_control.steering); if (control_mode == MANUAL) { set_servos_manual_passthrough(); } else { set_servos_controlled(); } // setup flap outputs set_servos_flaps(); if (control_mode >= FLY_BY_WIRE_B || quadplane.in_assisted_flight() || quadplane.in_vtol_mode()) { /* only do throttle slew limiting in modes where throttle * control is automatic */ throttle_slew_limit(); } if (!arming.is_armed()) { //Some ESCs get noisy (beep error msgs) if PWM == 0. //This little segment aims to avoid this. switch (arming.arming_required()) { case AP_Arming::NO: //keep existing behavior: do nothing to radio_out //(don't disarm throttle channel even if AP_Arming class is) break; case AP_Arming::YES_ZERO_PWM: SRV_Channels::set_output_pwm(SRV_Channel::k_throttle, 0); break; case AP_Arming::YES_MIN_PWM: default: SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0); break; } } #if HIL_SUPPORT if (g.hil_mode == 1) { // get the servos to the GCS immediately for HIL if (HAVE_PAYLOAD_SPACE(MAVLINK_COMM_0, RC_CHANNELS_SCALED)) { send_servo_out(MAVLINK_COMM_0); } if (!g.hil_servos) { // we don't run the output mixer return; } } #endif if (landing.get_then_servos_neutral() > 0 && control_mode == AUTO && landing.get_disarm_delay() > 0 && landing.is_complete() && !arming.is_armed()) { // after an auto land and auto disarm, set the servos to be neutral just // in case we're upside down or some crazy angle and straining the servos. if (landing.get_then_servos_neutral() == 1) { SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, 0); SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, 0); SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, 0); } else if (landing.get_then_servos_neutral() == 2) { SRV_Channels::set_output_limit(SRV_Channel::k_aileron, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_output_limit(SRV_Channel::k_elevator, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_output_limit(SRV_Channel::k_rudder, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); } } uint8_t override_pct; if (g2.ice_control.throttle_override(override_pct)) { // the ICE controller wants to override the throttle for starting SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, override_pct); } // run output mixer and send values to the hal for output servos_output(); } /* run configured output mixer. This takes calculated servo_out values for each channel and calculates PWM values, then pushes them to hal.rcout */ void Plane::servos_output(void) { hal.rcout->cork(); // support twin-engine aircraft servos_twin_engine_mix(); // cope with tailsitters quadplane.tailsitter_output(); // the mixers need pwm to be calculated now SRV_Channels::calc_pwm(); // run vtail and elevon mixers servo_output_mixers(); SRV_Channels::calc_pwm(); SRV_Channels::output_ch_all(); hal.rcout->push(); if (g2.servo_channels.auto_trim_enabled()) { servos_auto_trim(); } } /* implement automatic persistent trim of control surfaces with AUTO_TRIM=2, only available when SERVO_RNG_ENABLE=1 as otherwise it would impact R/C transmitter calibration */ void Plane::servos_auto_trim(void) { // only in auto modes and FBWA if (!auto_throttle_mode && control_mode != FLY_BY_WIRE_A) { return; } if (!hal.util->get_soft_armed()) { return; } if (!is_flying()) { return; } if (quadplane.in_assisted_flight() || quadplane.in_vtol_mode()) { // can't auto-trim with quadplane motors running return; } if (abs(nav_roll_cd) > 700 || abs(nav_pitch_cd) > 700) { // only when close to level return; } uint32_t now = AP_HAL::millis(); if (now - auto_trim.last_trim_check < 500) { // check twice a second. We want slow trim update return; } if (ahrs.groundspeed() < 8 || smoothed_airspeed < 8) { // only when definitely moving return; } // adjust trim on channels by a small amount according to I value float roll_I = rollController.get_pid_info().I; float pitch_I = pitchController.get_pid_info().I; g2.servo_channels.adjust_trim(SRV_Channel::k_aileron, roll_I); g2.servo_channels.adjust_trim(SRV_Channel::k_elevator, pitch_I); g2.servo_channels.adjust_trim(SRV_Channel::k_elevon_left, pitch_I - roll_I); g2.servo_channels.adjust_trim(SRV_Channel::k_elevon_right, pitch_I + roll_I); g2.servo_channels.adjust_trim(SRV_Channel::k_vtail_left, pitch_I); g2.servo_channels.adjust_trim(SRV_Channel::k_vtail_right, pitch_I); g2.servo_channels.adjust_trim(SRV_Channel::k_flaperon_left, roll_I); g2.servo_channels.adjust_trim(SRV_Channel::k_flaperon_right, -roll_I); g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerLeft1, pitch_I - roll_I); g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerLeft2, pitch_I - roll_I); g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerRight1, pitch_I + roll_I); g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerRight2, pitch_I + roll_I); auto_trim.last_trim_check = now; if (now - auto_trim.last_trim_save > 10000) { auto_trim.last_trim_save = now; g2.servo_channels.save_trim(); } }