/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // SiRF Binary GPS driver for ArduPilot and ArduPilotMega. // Code by Michael Smith. // #include "AP_GPS_config.h" #if AP_GPS_SIRF_ENABLED #include "AP_GPS_SIRF.h" #include #include // Initialisation messages // // Turn off all messages except for 0x29. // // XXX the bytes show up on the wire, but at least my test unit (EM-411) seems to ignore them. // const uint8_t AP_GPS_SIRF::_initialisation_blob[] = { 0xa0, 0xa2, 0x00, 0x08, 0xa6, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xa8, 0xb0, 0xb3, 0xa0, 0xa2, 0x00, 0x08, 0xa6, 0x00, 0x29, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd0, 0xb0, 0xb3 }; AP_GPS_SIRF::AP_GPS_SIRF(AP_GPS &_gps, AP_GPS::Params &_params, AP_GPS::GPS_State &_state, AP_HAL::UARTDriver *_port) : AP_GPS_Backend(_gps, _params, _state, _port) { gps.send_blob_start(state.instance, (const char *)_initialisation_blob, sizeof(_initialisation_blob)); } // Process bytes available from the stream // // The stream is assumed to contain only messages we recognise. If it // contains other messages, and those messages contain the preamble // bytes, it is possible for this code to fail to synchronise to the // stream immediately. Without buffering the entire message and // re-processing it from the top, this is unavoidable. The parser // attempts to avoid this when possible. // bool AP_GPS_SIRF::read(void) { uint8_t data; int16_t numc; bool parsed = false; numc = port->available(); while(numc--) { // read the next byte data = port->read(); switch(_step) { // Message preamble detection // // If we fail to match any of the expected bytes, we reset // the state machine and re-consider the failed byte as // the first byte of the preamble. This improves our // chances of recovering from a mismatch and makes it less // likely that we will be fooled by the preamble appearing // as data in some other message. // case 1: if (PREAMBLE2 == data) { _step++; break; } _step = 0; FALLTHROUGH; case 0: if(PREAMBLE1 == data) _step++; break; // Message length // // We always collect the length so that we can avoid being // fooled by preamble bytes in messages. // case 2: _step++; _payload_length = (uint16_t)data << 8; break; case 3: _step++; _payload_length |= data; _payload_counter = 0; _checksum = 0; break; // Message header processing // // We sniff the message ID to determine whether we are going // to gather the message bytes or just discard them. // case 4: _step++; _accumulate(data); _payload_length--; _gather = false; switch(data) { case MSG_GEONAV: if (_payload_length == sizeof(sirf_geonav)) { _gather = true; _msg_id = data; } break; } break; // Receive message data // // Note that we are effectively guaranteed by the protocol // that the checksum and postamble cannot be mistaken for // the preamble, so if we are discarding bytes in this // message when the payload is done we return directly // to the preamble detector rather than bothering with // the checksum logic. // case 5: if (_gather) { // gather data if requested _accumulate(data); _buffer[_payload_counter] = data; if (++_payload_counter == _payload_length) _step++; } else { if (++_payload_counter == _payload_length) _step = 0; } break; // Checksum and message processing // case 6: _step++; if ((_checksum >> 8) != data) { _step = 0; } break; case 7: _step = 0; if ((_checksum & 0xff) != data) { break; } if (_gather) { parsed = _parse_gps(); // Parse the new GPS packet } } } return(parsed); } bool AP_GPS_SIRF::_parse_gps(void) { switch(_msg_id) { case MSG_GEONAV: //time = _swapl(&_buffer.nav.time); // parse fix type if (_buffer.nav.fix_invalid) { state.status = AP_GPS::NO_FIX; }else if ((_buffer.nav.fix_type & FIX_MASK) == FIX_3D) { state.status = AP_GPS::GPS_OK_FIX_3D; }else{ state.status = AP_GPS::GPS_OK_FIX_2D; } state.location.lat = int32_t(be32toh(_buffer.nav.latitude)); state.location.lng = int32_t(be32toh(_buffer.nav.longitude)); const int32_t alt_amsl = int32_t(be32toh(_buffer.nav.altitude_msl)); const int32_t alt_ellipsoid = int32_t(be32toh(_buffer.nav.altitude_ellipsoid)); state.undulation = (alt_amsl - alt_ellipsoid)*0.01; state.have_undulation = true; set_alt_amsl_cm(state, alt_amsl); state.ground_speed = int32_t(be32toh(_buffer.nav.ground_speed))*0.01f; state.ground_course = wrap_360(int16_t(be16toh(_buffer.nav.ground_course)*0.01f)); state.num_sats = _buffer.nav.satellites; fill_3d_velocity(); return true; } return false; } void AP_GPS_SIRF::_accumulate(uint8_t val) { _checksum = (_checksum + val) & 0x7fff; } /* detect a SIRF GPS */ bool AP_GPS_SIRF::_detect(struct SIRF_detect_state &state, uint8_t data) { switch (state.step) { case 1: if (PREAMBLE2 == data) { state.step++; break; } state.step = 0; FALLTHROUGH; case 0: state.payload_length = state.payload_counter = state.checksum = 0; if (PREAMBLE1 == data) state.step++; break; case 2: state.step++; if (data != 0) { // only look for short messages state.step = 0; } break; case 3: state.step++; state.payload_length = data; break; case 4: state.checksum = (state.checksum + data) & 0x7fff; if (++state.payload_counter == state.payload_length) { state.step++; } break; case 5: state.step++; if ((state.checksum >> 8) != data) { state.step = 0; } break; case 6: state.step = 0; if ((state.checksum & 0xff) == data) { return true; } } return false; } #endif // AP_GPS_SIRF_ENABLED