/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL #include #include #include "AP_HAL_AVR_SITL_Namespace.h" #include "HAL_AVR_SITL_Class.h" #include "UARTDriver.h" #include "Scheduler.h" #include #include #include #include #include #include #include extern const AP_HAL::HAL& hal; // emulate RC input struct RC_ICR4 ICR4; using namespace AVR_SITL; enum SITL_State::vehicle_type SITL_State::_vehicle; uint16_t SITL_State::_framerate; struct sockaddr_in SITL_State::_rcout_addr; pid_t SITL_State::_parent_pid; uint32_t SITL_State::_update_count; bool SITL_State::_motors_on; AP_Baro_BMP085_HIL *SITL_State::_barometer; AP_InertialSensor_Stub *SITL_State::_ins; SITLScheduler *SITL_State::_scheduler; AP_Compass_HIL *SITL_State::_compass; int SITL_State::_sitl_fd; SITL *SITL_State::_sitl; uint16_t SITL_State::_pwm_output[11]; // catch floating point exceptions void SITL_State::_sig_fpe(int signum) { printf("ERROR: Floating point exception\n"); exit(1); } void SITL_State::_usage(void) { printf("Options:\n"); printf("\t-w wipe eeprom and dataflash\n"); printf("\t-r RATE set SITL framerate\n"); printf("\t-H HEIGHT initial barometric height\n"); printf("\t-C use console instead of TCP ports\n"); } void SITL_State::_parse_command_line(int argc, char * const argv[]) { int opt; signal(SIGFPE, _sig_fpe); while ((opt = getopt(argc, argv, "swhr:H:C")) != -1) { switch (opt) { case 'w': AP_Param::erase_all(); unlink("dataflash.bin"); break; case 'r': _framerate = (unsigned)atoi(optarg); break; case 'H': _initial_height = atof(optarg); break; case 'C': AVR_SITL::SITLUARTDriver::_console = true; break; default: _usage(); exit(1); } } printf("Starting sketch '%s'\n", SKETCH); if (strcmp(SKETCH, "ArduCopter") == 0) { _vehicle = ArduCopter; if (_framerate == 0) { _framerate = 200; } } else if (strcmp(SKETCH, "APMrover2") == 0) { _vehicle = APMrover2; if (_framerate == 0) { _framerate = 50; } // set right default throttle for rover (allowing for reverse) ICR4.set(2, 1500); } else { _vehicle = ArduPlane; if (_framerate == 0) { _framerate = 50; } } _sitl_setup(); } /* setup for SITL handling */ void SITL_State::_sitl_setup(void) { #ifndef __CYGWIN__ _parent_pid = getppid(); #endif _rcout_addr.sin_family = AF_INET; _rcout_addr.sin_port = htons(_rcout_port); inet_pton(AF_INET, "127.0.0.1", &_rcout_addr.sin_addr); _setup_timer(); _setup_fdm(); printf("Starting SITL input\n"); // find the barometer object if it exists _sitl = (SITL *)AP_Param::find_object("SIM_"); _barometer = (AP_Baro_BMP085_HIL *)AP_Param::find_object("GND_"); _ins = (AP_InertialSensor_Stub *)AP_Param::find_object("INS_"); _compass = (AP_Compass_HIL *)AP_Param::find_object("COMPASS_"); if (_sitl != NULL) { // setup some initial values _update_barometer(_initial_height); _update_ins(0, 0, 0, 0, 0, 0, 0, 0, -9.8, 0); _update_compass(0, 0, 0); _update_gps(0, 0, 0, 0, 0, false); } } /* setup a SITL FDM listening UDP port */ void SITL_State::_setup_fdm(void) { int one=1, ret; struct sockaddr_in sockaddr; memset(&sockaddr,0,sizeof(sockaddr)); #ifdef HAVE_SOCK_SIN_LEN sockaddr.sin_len = sizeof(sockaddr); #endif sockaddr.sin_port = htons(_simin_port); sockaddr.sin_family = AF_INET; _sitl_fd = socket(AF_INET, SOCK_DGRAM, 0); if (_sitl_fd == -1) { fprintf(stderr, "SITL: socket failed - %s\n", strerror(errno)); exit(1); } /* we want to be able to re-use ports quickly */ setsockopt(_sitl_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); ret = bind(_sitl_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); if (ret == -1) { fprintf(stderr, "SITL: bind failed on port %u - %s\n", (unsigned)ntohs(sockaddr.sin_port), strerror(errno)); exit(1); } AVR_SITL::SITLUARTDriver::_set_nonblocking(_sitl_fd); } /* timer called at 1kHz */ void SITL_State::_timer_handler(int signum) { static uint32_t last_update_count; static bool in_timer; if (in_timer || ((SITLScheduler *)hal.scheduler)->interrupts_are_blocked()) { return; } _scheduler->begin_atomic(); in_timer = true; #ifndef __CYGWIN__ /* make sure we die if our parent dies */ if (kill(_parent_pid, 0) != 0) { exit(1); } #else static uint16_t count = 0; static uint32_t last_report; count++; if (millis() - last_report > 1000) { printf("TH %u cps\n", count); count = 0; last_report = millis(); } #endif /* check for packet from flight sim */ _fdm_input(); // send RC output to flight sim _simulator_output(); if (_update_count == 0 && _sitl != NULL) { _update_gps(0, 0, 0, 0, 0, false); _scheduler->timer_event(); _scheduler->end_atomic(); in_timer = false; return; } if (_update_count == last_update_count) { _scheduler->timer_event(); _scheduler->end_atomic(); in_timer = false; return; } last_update_count = _update_count; if (_sitl != NULL) { _update_gps(_sitl->state.latitude, _sitl->state.longitude, _sitl->state.altitude, _sitl->state.speedN, _sitl->state.speedE, !_sitl->gps_disable); _update_ins(_sitl->state.rollDeg, _sitl->state.pitchDeg, _sitl->state.yawDeg, _sitl->state.rollRate, _sitl->state.pitchRate, _sitl->state.yawRate, _sitl->state.xAccel, _sitl->state.yAccel, _sitl->state.zAccel, _sitl->state.airspeed); _update_barometer(_sitl->state.altitude); _update_compass(_sitl->state.rollDeg, _sitl->state.pitchDeg, _sitl->state.heading); } // trigger all APM timers. We do this last as it can re-enable // interrupts, which can lead to recursion _scheduler->timer_event(); _scheduler->end_atomic(); in_timer = false; } /* check for a SITL FDM packet */ void SITL_State::_fdm_input(void) { ssize_t size; struct pwm_packet { uint16_t pwm[8]; }; union { struct sitl_fdm fg_pkt; struct pwm_packet pwm_pkt; } d; size = recv(_sitl_fd, &d, sizeof(d), MSG_DONTWAIT); switch (size) { case 132: static uint32_t last_report; static uint32_t count; if (d.fg_pkt.magic != 0x4c56414e) { printf("Bad FDM packet - magic=0x%08x\n", d.fg_pkt.magic); return; } if (d.fg_pkt.latitude == 0 || d.fg_pkt.longitude == 0 || d.fg_pkt.altitude <= 0) { // garbage input return; } _sitl->state = d.fg_pkt; _update_count++; count++; if (hal.scheduler->millis() - last_report > 1000) { //printf("SIM %u FPS\n", count); count = 0; last_report = hal.scheduler->millis(); } break; case 16: { // a packet giving the receiver PWM inputs uint8_t i; for (i=0; i<8; i++) { // setup the ICR4 register for the RC channel // inputs if (d.pwm_pkt.pwm[i] != 0) { ICR4.set(i, d.pwm_pkt.pwm[i]); } } break; } } } /* send RC outputs to simulator */ void SITL_State::_simulator_output(void) { static uint32_t last_update; struct { uint16_t pwm[11]; uint16_t speed, direction, turbulance; } control; /* this maps the registers used for PWM outputs. The RC * driver updates these whenever it wants the channel output * to change */ uint8_t i; if (last_update == 0) { for (i=0; i<11; i++) { _pwm_output[i] = 1000; } if (_vehicle == ArduPlane) { _pwm_output[0] = _pwm_output[1] = _pwm_output[3] = 1500; _pwm_output[7] = 1800; } if (_vehicle == APMrover2) { _pwm_output[0] = _pwm_output[1] = _pwm_output[2] = _pwm_output[3] = 1500; _pwm_output[7] = 1800; } } if (_sitl == NULL) { return; } // output at chosen framerate if (last_update != 0 && hal.scheduler->millis() - last_update < 1000/_framerate) { return; } last_update = hal.scheduler->millis(); for (i=0; i<11; i++) { if (_pwm_output[i] == 0xFFFF) { control.pwm[i] = 0; } else { control.pwm[i] = _pwm_output[i]; } } if (_vehicle == ArduPlane) { // add in engine multiplier if (control.pwm[2] > 1000) { control.pwm[2] = ((control.pwm[2]-1000) * _sitl->engine_mul) + 1000; if (control.pwm[2] > 2000) control.pwm[2] = 2000; } _motors_on = ((control.pwm[2]-1000)/1000.0) > 0; } else if (_vehicle == APMrover2) { // add in engine multiplier if (control.pwm[2] != 1500) { control.pwm[2] = ((control.pwm[2]-1500) * _sitl->engine_mul) + 1500; if (control.pwm[2] > 2000) control.pwm[2] = 2000; if (control.pwm[2] < 1000) control.pwm[2] = 1000; } _motors_on = ((control.pwm[2]-1500)/500.0) != 0; } else { _motors_on = false; for (i=0; i<4; i++) { if ((control.pwm[i]-1000)/1000.0 > 0) { _motors_on = true; } } } // setup wind control control.speed = _sitl->wind_speed * 100; float direction = _sitl->wind_direction; if (direction < 0) { direction += 360; } control.direction = direction * 100; control.turbulance = _sitl->wind_turbulance * 100; // zero the wind for the first 15s to allow pitot calibration if (hal.scheduler->millis() < 15000) { control.speed = 0; } sendto(_sitl_fd, (void*)&control, sizeof(control), MSG_DONTWAIT, (const sockaddr *)&_rcout_addr, sizeof(_rcout_addr)); } /* setup a timer used to prod the ISRs */ void SITL_State::_setup_timer(void) { struct itimerval it; struct sigaction act; act.sa_handler = _timer_handler; act.sa_flags = SA_RESTART|SA_NODEFER; sigemptyset(&act.sa_mask); sigaddset(&act.sa_mask, SIGALRM); sigaction(SIGALRM, &act, NULL); it.it_interval.tv_sec = 0; it.it_interval.tv_usec = 1000; // 1KHz it.it_value = it.it_interval; setitimer(ITIMER_REAL, &it, NULL); } // generate a random float between -1 and 1 float SITL_State::_rand_float(void) { return ((((unsigned)random()) % 2000000) - 1.0e6) / 1.0e6; } // generate a random Vector3f of size 1 Vector3f SITL_State::_rand_vec3f(void) { Vector3f v = Vector3f(_rand_float(), _rand_float(), _rand_float()); if (v.length() != 0.0) { v.normalize(); } return v; } void SITL_State::init(int argc, char * const argv[]) { _scheduler = (SITLScheduler *)hal.scheduler; _parse_command_line(argc, argv); } #endif