/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_OpticalFlow_ADNS3080.cpp - ADNS3080 OpticalFlow Library for * Ardupilot Mega * Code by Randy Mackay. DIYDrones.com * */ #include #include "AP_OpticalFlow_ADNS3080.h" extern const AP_HAL::HAL& hal; // Constructors //////////////////////////////////////////////////////////////// AP_OpticalFlow_ADNS3080::AP_OpticalFlow_ADNS3080() { field_of_view = AP_OPTICALFLOW_ADNS3080_08_FOV; scaler = AP_OPTICALFLOW_ADNS3080_SCALER_1600; } // Public Methods ////////////////////////////////////////////////////////////// // init - initialise sensor // assumes SPI bus has been initialised but will attempt to initialise // nonstandard SPI3 bus if required void AP_OpticalFlow_ADNS3080::init() { int8_t retry = 0; _flags.healthy = false; // suspend timer while we set-up SPI communication hal.scheduler->suspend_timer_procs(); // get pointer to the spi bus _spi = hal.spi->device(AP_HAL::SPIDevice_ADNS3080_SPI0); if (_spi != NULL) { // check 3 times for the sensor on standard SPI bus while (!_flags.healthy && retry < 3) { if (read_register(ADNS3080_PRODUCT_ID) == 0x17) { _flags.healthy = true; } retry++; } } // if not yet found, get pointer to the SPI3 bus if (!_flags.healthy) { _spi = hal.spi->device(AP_HAL::SPIDevice_ADNS3080_SPI3); if (_spi != NULL) { // check 3 times on SPI3 retry = 0; while (!_flags.healthy && retry < 3) { if (read_register(ADNS3080_PRODUCT_ID) == 0x17) { _flags.healthy = true; } retry++; } } } // configure the sensor if (_flags.healthy) { // set frame rate to manual uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG); hal.scheduler->delay_microseconds(50); regVal = (regVal & ~0x01) | 0x01; write_register(ADNS3080_EXTENDED_CONFIG, regVal); hal.scheduler->delay_microseconds(50); // set frame period to 12000 (0x2EE0) write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,0xE0); hal.scheduler->delay_microseconds(50); write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,0x2E); hal.scheduler->delay_microseconds(50); // set 1600 resolution bit regVal = read_register(ADNS3080_CONFIGURATION_BITS); hal.scheduler->delay_microseconds(50); regVal |= 0x10; write_register(ADNS3080_CONFIGURATION_BITS, regVal); hal.scheduler->delay_microseconds(50); // update scalers update_conversion_factors(); // register the global static read function to be called at 1khz hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_OpticalFlow_ADNS3080::read)); }else{ // no connection available. _spi = NULL; } // resume timer hal.scheduler->resume_timer_procs(); } // Read a register from the sensor uint8_t AP_OpticalFlow_ADNS3080::read_register(uint8_t address) { AP_HAL::Semaphore *spi_sem; // check that we have an spi bus if (_spi == NULL) { return 0; } // get spi bus semaphore spi_sem = _spi->get_semaphore(); // try to get control of the spi bus if (spi_sem == NULL || !spi_sem->take_nonblocking()) { return 0; } _spi->cs_assert(); // send the device the register you want to read: _spi->transfer(address); hal.scheduler->delay_microseconds(50); // send a value of 0 to read the first byte returned: uint8_t result = _spi->transfer(0x00); _spi->cs_release(); // release the spi bus spi_sem->give(); return result; } // write a value to one of the sensor's registers void AP_OpticalFlow_ADNS3080::write_register(uint8_t address, uint8_t value) { AP_HAL::Semaphore *spi_sem; // check that we have an spi bus if (_spi == NULL) { return; } // get spi bus semaphore spi_sem = _spi->get_semaphore(); // try to get control of the spi bus if (spi_sem == NULL || !spi_sem->take_nonblocking()) { return; } _spi->cs_assert(); // send register address _spi->transfer(address | 0x80 ); hal.scheduler->delay_microseconds(50); // send data _spi->transfer(value); _spi->cs_release(); // release the spi bus spi_sem->give(); } // read latest values from sensor and fill in x,y and totals void AP_OpticalFlow_ADNS3080::update(void) { uint8_t motion_reg; surface_quality = read_register(ADNS3080_SQUAL); hal.scheduler->delay_microseconds(50); // check for movement, update x,y values motion_reg = read_register(ADNS3080_MOTION); if ((motion_reg & 0x80) != 0) { raw_dx = ((int8_t)read_register(ADNS3080_DELTA_X)); hal.scheduler->delay_microseconds(50); raw_dy = ((int8_t)read_register(ADNS3080_DELTA_Y)); }else{ raw_dx = 0; raw_dy = 0; } last_update = hal.scheduler->millis(); Vector3f rot_vector(raw_dx, raw_dy, 0); // rotate dx and dy rot_vector.rotate(_orientation); dx = rot_vector.x; dy = rot_vector.y; } // parent method called at 1khz by periodic process // this is slowed down to 20hz and each instance's update function is called // (only one instance is supported at the moment) void AP_OpticalFlow_ADNS3080::read(void) { _num_calls++; if (_num_calls >= AP_OPTICALFLOW_ADNS3080_NUM_CALLS_FOR_20HZ) { _num_calls = 0; update(); } }; // clear_motion - will cause the Delta_X, Delta_Y, and internal motion // registers to be cleared void AP_OpticalFlow_ADNS3080::clear_motion() { // writing anything to this register will clear the sensor's motion // registers write_register(ADNS3080_MOTION_CLEAR,0xFF); x_cm = 0; y_cm = 0; dx = 0; dy = 0; } // get_pixel_data - captures an image from the sensor and stores it to the // pixe_data array void AP_OpticalFlow_ADNS3080::print_pixel_data() { int16_t i,j; bool isFirstPixel = true; uint8_t regValue; uint8_t pixelValue; // write to frame capture register to force capture of frame write_register(ADNS3080_FRAME_CAPTURE,0x83); // wait 3 frame periods + 10 nanoseconds for frame to be captured // min frame speed is 2000 frames/second so 1 frame = 500 nano seconds. // so 500 x 3 + 10 = 1510 hal.scheduler->delay_microseconds(1510); // display the pixel data for (i=0; iprintln_P( PSTR("Optflow: failed to find first pixel")); } isFirstPixel = false; pixelValue = ( regValue << 2 ); hal.console->print(pixelValue,BASE_DEC); if (j!= ADNS3080_PIXELS_X-1) hal.console->print_P(PSTR(",")); hal.scheduler->delay_microseconds(50); } hal.console->println(); } } // updates conversion factors that are dependent upon field_of_view void AP_OpticalFlow_ADNS3080::update_conversion_factors() { // multiply this number by altitude and pixel change to get horizontal // move (in same units as altitude) conv_factor = ((1.0f / (float)(ADNS3080_PIXELS_X * scaler)) * 2.0f * tanf(field_of_view / 2.0f)); // 0.00615 radians_to_pixels = (ADNS3080_PIXELS_X * scaler) / field_of_view; // 162.99 }