/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #include extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AC_WPNav::var_info[] PROGMEM = { // index 0 was used for the old orientation matrix // @Param: SPEED // @DisplayName: Waypoint Horizontal Speed Target // @Description: Defines the speed in cm/s which the aircraft will attempt to maintain horizontally during a WP mission // @Units: cm/s // @Range: 0 2000 // @Increment: 50 // @User: Standard AP_GROUPINFO("SPEED", 0, AC_WPNav, _wp_speed_cms, WPNAV_WP_SPEED), // @Param: RADIUS // @DisplayName: Waypoint Radius // @Description: Defines the distance from a waypoint, that when crossed indicates the wp has been hit. // @Units: cm // @Range: 100 1000 // @Increment: 1 // @User: Standard AP_GROUPINFO("RADIUS", 1, AC_WPNav, _wp_radius_cm, WPNAV_WP_RADIUS), // @Param: SPEED_UP // @DisplayName: Waypoint Climb Speed Target // @Description: Defines the speed in cm/s which the aircraft will attempt to maintain while climbing during a WP mission // @Units: cm/s // @Range: 0 1000 // @Increment: 50 // @User: Standard AP_GROUPINFO("SPEED_UP", 2, AC_WPNav, _wp_speed_up_cms, WPNAV_WP_SPEED_UP), // @Param: SPEED_DN // @DisplayName: Waypoint Descent Speed Target // @Description: Defines the speed in cm/s which the aircraft will attempt to maintain while descending during a WP mission // @Units: cm/s // @Range: 0 1000 // @Increment: 50 // @User: Standard AP_GROUPINFO("SPEED_DN", 3, AC_WPNav, _wp_speed_down_cms, WPNAV_WP_SPEED_DOWN), // @Param: LOIT_SPEED // @DisplayName: Loiter Horizontal Maximum Speed // @Description: Defines the maximum speed in cm/s which the aircraft will travel horizontally while in loiter mode // @Units: cm/s // @Range: 0 2000 // @Increment: 50 // @User: Standard AP_GROUPINFO("LOIT_SPEED", 4, AC_WPNav, _loiter_speed_cms, WPNAV_LOITER_SPEED), // @Param: ACCEL // @DisplayName: Waypoint Acceleration // @Description: Defines the horizontal acceleration in cm/s/s used during missions // @Units: cm/s/s // @Range: 0 980 // @Increment: 10 // @User: Standard AP_GROUPINFO("ACCEL", 5, AC_WPNav, _wp_accel_cms, WPNAV_ACCELERATION), AP_GROUPEND }; // Default constructor. // Note that the Vector/Matrix constructors already implicitly zero // their values. // AC_WPNav::AC_WPNav(const AP_InertialNav* inav, const AP_AHRS* ahrs, APM_PI* pid_pos_lat, APM_PI* pid_pos_lon, AC_PID* pid_rate_lat, AC_PID* pid_rate_lon) : _inav(inav), _ahrs(ahrs), _pid_pos_lat(pid_pos_lat), _pid_pos_lon(pid_pos_lon), _pid_rate_lat(pid_rate_lat), _pid_rate_lon(pid_rate_lon), _loiter_last_update(0), _wpnav_last_update(0), _cos_yaw(1.0), _sin_yaw(0.0), _cos_pitch(1.0), _althold_kP(WPNAV_ALT_HOLD_P), _desired_roll(0), _desired_pitch(0), _target(0,0,0), _pilot_vel_forward_cms(0), _pilot_vel_right_cms(0), _target_vel(0,0,0), _vel_last(0,0,0), _loiter_leash(WPNAV_MIN_LEASH_LENGTH), _loiter_accel_cms(WPNAV_LOITER_ACCEL_MAX), _lean_angle_max_cd(MAX_LEAN_ANGLE), _wp_leash_xy(WPNAV_MIN_LEASH_LENGTH), _wp_leash_z(WPNAV_MIN_LEASH_LENGTH), _track_accel(0), _track_speed(0), _track_leash_length(0), dist_error(0,0), desired_vel(0,0), desired_accel(0,0) { AP_Param::setup_object_defaults(this, var_info); // initialise leash lengths calculate_wp_leash_length(true); calculate_loiter_leash_length(); } /// /// simple loiter controller /// /// get_stopping_point - returns vector to stopping point based on a horizontal position and velocity void AC_WPNav::get_stopping_point(const Vector3f& position, const Vector3f& velocity, Vector3f &target) const { float linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt. float linear_velocity; // the velocity we swap between linear and sqrt. float vel_total; float target_dist; float kP = _pid_pos_lat->kP(); // calculate current velocity vel_total = safe_sqrt(velocity.x*velocity.x + velocity.y*velocity.y); // avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero if (vel_total < 10.0f || kP <= 0.0f || _wp_accel_cms <= 0.0f) { target = position; return; } // calculate point at which velocity switches from linear to sqrt linear_velocity = _wp_accel_cms/kP; // calculate distance within which we can stop if (vel_total < linear_velocity) { target_dist = vel_total/kP; } else { linear_distance = _wp_accel_cms/(2.0f*kP*kP); target_dist = linear_distance + (vel_total*vel_total)/(2.0f*_wp_accel_cms); } target_dist = constrain_float(target_dist, 0, _wp_leash_xy); target.x = position.x + (target_dist * velocity.x / vel_total); target.y = position.y + (target_dist * velocity.y / vel_total); target.z = position.z; } /// set_loiter_target in cm from home void AC_WPNav::set_loiter_target(const Vector3f& position) { _target = position; _target_vel.x = 0; _target_vel.y = 0; } /// init_loiter_target - set initial loiter target based on current position and velocity void AC_WPNav::init_loiter_target(const Vector3f& position, const Vector3f& velocity) { // set target position and velocity based on current pos and velocity _target.x = position.x; _target.y = position.y; _target_vel.x = velocity.x; _target_vel.y = velocity.y; // initialise desired roll and pitch to current roll and pitch. This avoids a random twitch between now and when the loiter controller is first run _desired_roll = constrain_int32(_ahrs->roll_sensor,-_lean_angle_max_cd,_lean_angle_max_cd); _desired_pitch = constrain_int32(_ahrs->pitch_sensor,-_lean_angle_max_cd,_lean_angle_max_cd); // initialise pilot input _pilot_vel_forward_cms = 0; _pilot_vel_right_cms = 0; // set last velocity to current velocity // To-Do: remove the line below by instead forcing reset_I to be called on the first loiter_update call _vel_last = _inav->get_velocity(); } /// move_loiter_target - move loiter target by velocity provided in front/right directions in cm/s void AC_WPNav::move_loiter_target(float control_roll, float control_pitch, float dt) { // convert pilot input to desired velocity in cm/s _pilot_vel_forward_cms = -control_pitch * _loiter_accel_cms / 4500.0f; _pilot_vel_right_cms = control_roll * _loiter_accel_cms / 4500.0f; } /// translate_loiter_target_movements - consumes adjustments created by move_loiter_target void AC_WPNav::translate_loiter_target_movements(float nav_dt) { Vector2f target_vel_adj; float vel_total; // range check nav_dt if( nav_dt < 0 ) { return; } // check loiter speed and avoid divide by zero if( _loiter_speed_cms < 100.0f) { _loiter_speed_cms = 100.0f; } // rotate pilot input to lat/lon frame target_vel_adj.x = (_pilot_vel_forward_cms*_cos_yaw - _pilot_vel_right_cms*_sin_yaw); target_vel_adj.y = (_pilot_vel_forward_cms*_sin_yaw + _pilot_vel_right_cms*_cos_yaw); // add desired change in velocity to current target velocit _target_vel.x += target_vel_adj.x*nav_dt; _target_vel.y += target_vel_adj.y*nav_dt; if(_target_vel.x > 0 ) { _target_vel.x -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.x/_loiter_speed_cms; _target_vel.x = max(_target_vel.x - WPNAV_LOITER_ACCEL_MIN*nav_dt, 0); }else if(_target_vel.x < 0) { _target_vel.x -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.x/_loiter_speed_cms; _target_vel.x = min(_target_vel.x + WPNAV_LOITER_ACCEL_MIN*nav_dt, 0); } if(_target_vel.y > 0 ) { _target_vel.y -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.y/_loiter_speed_cms; _target_vel.y = max(_target_vel.y - WPNAV_LOITER_ACCEL_MIN*nav_dt, 0); }else if(_target_vel.y < 0) { _target_vel.y -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.y/_loiter_speed_cms; _target_vel.y = min(_target_vel.y + WPNAV_LOITER_ACCEL_MIN*nav_dt, 0); } // constrain the velocity vector and scale if necessary vel_total = safe_sqrt(_target_vel.x*_target_vel.x + _target_vel.y*_target_vel.y); if (vel_total > _loiter_speed_cms && vel_total > 0.0f) { _target_vel.x = _loiter_speed_cms * _target_vel.x/vel_total; _target_vel.y = _loiter_speed_cms * _target_vel.y/vel_total; } // update target position _target.x += _target_vel.x * nav_dt; _target.y += _target_vel.y * nav_dt; // constrain target position to within reasonable distance of current location Vector3f curr_pos = _inav->get_position(); Vector3f distance_err = _target - curr_pos; float distance = safe_sqrt(distance_err.x*distance_err.x + distance_err.y*distance_err.y); if (distance > _loiter_leash && distance > 0.0f) { _target.x = curr_pos.x + _loiter_leash * distance_err.x/distance; _target.y = curr_pos.y + _loiter_leash * distance_err.y/distance; } } /// get_distance_to_target - get horizontal distance to loiter target in cm float AC_WPNav::get_distance_to_target() const { return _distance_to_target; } /// get_bearing_to_target - get bearing to loiter target in centi-degrees int32_t AC_WPNav::get_bearing_to_target() const { return get_bearing_cd(_inav->get_position(), _target); } /// update_loiter - run the loiter controller - should be called at 10hz void AC_WPNav::update_loiter() { // calculate dt uint32_t now = hal.scheduler->millis(); float dt = (now - _loiter_last_update) / 1000.0f; // catch if we've just been started if( dt >= 1.0f ) { dt = 0.0f; reset_I(); _loiter_step = 0; } // reset step back to 0 if 0.1 seconds has passed and we completed the last full cycle if (dt > 0.095f && _loiter_step > 3) { _loiter_step = 0; } // run loiter steps switch (_loiter_step) { case 0: // capture time since last iteration _loiter_dt = dt; _loiter_last_update = now; // translate any adjustments from pilot to loiter target translate_loiter_target_movements(_loiter_dt); _loiter_step++; break; case 1: // run loiter's position to velocity step get_loiter_position_to_velocity(_loiter_dt, WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR); _loiter_step++; break; case 2: // run loiter's velocity to acceleration step get_loiter_velocity_to_acceleration(desired_vel.x, desired_vel.y, _loiter_dt); _loiter_step++; break; case 3: // run loiter's acceleration to lean angle step get_loiter_acceleration_to_lean_angles(desired_accel.x, desired_accel.y); _loiter_step++; break; } } /// calculate_loiter_leash_length - calculates the maximum distance in cm that the target position may be from the current location void AC_WPNav::calculate_loiter_leash_length() { // get loiter position P float kP = _pid_pos_lat->kP(); // check loiter speed if( _loiter_speed_cms < 100.0f) { _loiter_speed_cms = 100.0f; } // set loiter acceleration to 1/2 loiter speed _loiter_accel_cms = _loiter_speed_cms / 2.0f; // avoid divide by zero if (kP <= 0.0f || _wp_accel_cms <= 0.0f) { _loiter_leash = WPNAV_MIN_LEASH_LENGTH; return; } // calculate horizontal leash length if(WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR <= _wp_accel_cms / kP) { // linear leash length based on speed close in _loiter_leash = WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR / kP; }else{ // leash length grows at sqrt of speed further out _loiter_leash = (_wp_accel_cms / (2.0f*kP*kP)) + (WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR*WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR / (2.0f*_wp_accel_cms)); } // ensure leash is at least 1m long if( _loiter_leash < WPNAV_MIN_LEASH_LENGTH ) { _loiter_leash = WPNAV_MIN_LEASH_LENGTH; } } /// /// waypoint navigation /// /// set_destination - set destination using cm from home void AC_WPNav::set_destination(const Vector3f& destination) { // if waypoint controlls is active and copter has reached the previous waypoint use it for the origin if( _flags.reached_destination && ((hal.scheduler->millis() - _wpnav_last_update) < 1000) ) { _origin = _destination; }else{ // otherwise calculate origin from the current position and velocity get_stopping_point(_inav->get_position(), _inav->get_velocity(), _origin); } // set origin and destination set_origin_and_destination(_origin, destination); } /// set_origin_and_destination - set origin and destination using lat/lon coordinates void AC_WPNav::set_origin_and_destination(const Vector3f& origin, const Vector3f& destination) { // store origin and destination locations _origin = origin; _destination = destination; Vector3f pos_delta = _destination - _origin; // calculate leash lengths bool climb = pos_delta.z >= 0; // climbing vs descending leads to different leash lengths because speed_up_cms and speed_down_cms can be different _track_length = pos_delta.length(); // get track length // calculate each axis' percentage of the total distance to the destination if (_track_length == 0.0f) { // avoid possible divide by zero _pos_delta_unit.x = 0; _pos_delta_unit.y = 0; _pos_delta_unit.z = 0; }else{ _pos_delta_unit = pos_delta/_track_length; } calculate_wp_leash_length(climb); // update leash lengths // initialise intermediate point to the origin _track_desired = 0; _target = origin; _flags.reached_destination = false; // initialise the limited speed to current speed along the track const Vector3f &curr_vel = _inav->get_velocity(); // get speed along track (note: we convert vertical speed into horizontal speed equivalent) float speed_along_track = curr_vel.x * _pos_delta_unit.x + curr_vel.y * _pos_delta_unit.y + curr_vel.z * _pos_delta_unit.z; _limited_speed_xy_cms = constrain_float(speed_along_track,0,_wp_speed_cms); // default waypoint back to slow _flags.fast_waypoint = false; // initialise desired roll and pitch to current roll and pitch. This avoids a random twitch between now and when the wpnav controller is first run _desired_roll = constrain_int32(_ahrs->roll_sensor,-_lean_angle_max_cd,_lean_angle_max_cd); _desired_pitch = constrain_int32(_ahrs->pitch_sensor,-_lean_angle_max_cd,_lean_angle_max_cd); // reset target velocity - only used by loiter controller's interpretation of pilot input _target_vel.x = 0; _target_vel.y = 0; } /// advance_target_along_track - move target location along track from origin to destination void AC_WPNav::advance_target_along_track(float dt) { float track_covered; Vector3f track_error; float track_desired_max; float track_desired_temp = _track_desired; float track_extra_max; // get current location Vector3f curr_pos = _inav->get_position(); Vector3f curr_delta = curr_pos - _origin; // calculate how far along the track we are track_covered = curr_delta.x * _pos_delta_unit.x + curr_delta.y * _pos_delta_unit.y + curr_delta.z * _pos_delta_unit.z; Vector3f track_covered_pos = _pos_delta_unit * track_covered; track_error = curr_delta - track_covered_pos; // calculate the horizontal error float track_error_xy = safe_sqrt(track_error.x*track_error.x + track_error.y*track_error.y); // calculate the vertical error float track_error_z = fabsf(track_error.z); // calculate how far along the track we could move the intermediate target before reaching the end of the leash track_extra_max = min(_track_leash_length*(_wp_leash_z-track_error_z)/_wp_leash_z, _track_leash_length*(_wp_leash_xy-track_error_xy)/_wp_leash_xy); if(track_extra_max <0) { track_desired_max = track_covered; }else{ track_desired_max = track_covered + track_extra_max; } // get current velocity const Vector3f &curr_vel = _inav->get_velocity(); // get speed along track float speed_along_track = curr_vel.x * _pos_delta_unit.x + curr_vel.y * _pos_delta_unit.y + curr_vel.z * _pos_delta_unit.z; // calculate point at which velocity switches from linear to sqrt float linear_velocity = _wp_speed_cms; float kP = _pid_pos_lat->kP(); if (kP >= 0.0f) { // avoid divide by zero linear_velocity = _track_accel/kP; } // let the limited_speed_xy_cms be some range above or below current velocity along track if (speed_along_track < -linear_velocity) { // we are travelling fast in the opposite direction of travel to the waypoint so do not move the intermediate point _limited_speed_xy_cms = 0; }else{ // increase intermediate target point's velocity if not yet at target speed (we will limit it below) if(dt > 0) { if(track_desired_max > _track_desired) { _limited_speed_xy_cms += 2.0f * _track_accel * dt; }else{ // do nothing, velocity stays constant _track_desired = track_desired_max; } } // do not go over top speed if(_limited_speed_xy_cms > _track_speed) { _limited_speed_xy_cms = _track_speed; } // if our current velocity is within the linear velocity range limit the intermediate point's velocity to be no more than the linear_velocity above or below our current velocity if (fabsf(speed_along_track) < linear_velocity) { _limited_speed_xy_cms = constrain_float(_limited_speed_xy_cms,speed_along_track-linear_velocity,speed_along_track+linear_velocity); } } // advance the current target track_desired_temp += _limited_speed_xy_cms * dt; // do not let desired point go past the end of the segment track_desired_temp = constrain_float(track_desired_temp, 0, _track_length); _track_desired = max(_track_desired, track_desired_temp); // recalculate the desired position _target = _origin + _pos_delta_unit * _track_desired; // check if we've reached the waypoint if( !_flags.reached_destination ) { if( _track_desired >= _track_length ) { // "fast" waypoints are complete once the intermediate point reaches the destination if (_flags.fast_waypoint) { _flags.reached_destination = true; }else{ // regular waypoints also require the copter to be within the waypoint radius Vector3f dist_to_dest = curr_pos - _destination; if( dist_to_dest.length() <= _wp_radius_cm ) { _flags.reached_destination = true; } } } } } /// get_distance_to_destination - get horizontal distance to destination in cm float AC_WPNav::get_distance_to_destination() { // get current location Vector3f curr = _inav->get_position(); return pythagorous2(_destination.x-curr.x,_destination.y-curr.y); } /// get_bearing_to_destination - get bearing to next waypoint in centi-degrees int32_t AC_WPNav::get_bearing_to_destination() { return get_bearing_cd(_inav->get_position(), _destination); } /// update_wpnav - run the wp controller - should be called at 10hz void AC_WPNav::update_wpnav() { // calculate dt uint32_t now = hal.scheduler->millis(); float dt = (now - _wpnav_last_update) / 1000.0f; // catch if we've just been started if( dt >= 1.0f ) { dt = 0.0; reset_I(); _wpnav_step = 0; } // reset step back to 0 if 0.1 seconds has passed and we completed the last full cycle if (dt > 0.095f && _wpnav_step > 3) { _wpnav_step = 0; } // run loiter steps switch (_wpnav_step) { case 0: // capture time since last iteration _wpnav_dt = dt; _wpnav_last_update = now; // advance the target if necessary if (dt > 0.0f) { advance_target_along_track(dt); } _wpnav_step++; break; case 1: // run loiter's position to velocity step get_loiter_position_to_velocity(_wpnav_dt, _wp_speed_cms); _wpnav_step++; break; case 2: // run loiter's velocity to acceleration step get_loiter_velocity_to_acceleration(desired_vel.x, desired_vel.y, _wpnav_dt); _wpnav_step++; break; case 3: // run loiter's acceleration to lean angle step get_loiter_acceleration_to_lean_angles(desired_accel.x, desired_accel.y); _wpnav_step++; break; } } /// /// shared methods /// /// get_loiter_position_to_velocity - loiter position controller /// converts desired position held in _target vector to desired velocity void AC_WPNav::get_loiter_position_to_velocity(float dt, float max_speed_cms) { Vector3f curr = _inav->get_position(); float dist_error_total; float vel_sqrt; float vel_total; float linear_distance; // the distace we swap between linear and sqrt. float kP = _pid_pos_lat->kP(); // avoid divide by zero if (kP <= 0.0f) { desired_vel.x = 0.0; desired_vel.y = 0.0; }else{ // calculate distance error dist_error.x = _target.x - curr.x; dist_error.y = _target.y - curr.y; linear_distance = _wp_accel_cms/(2.0f*kP*kP); dist_error_total = safe_sqrt(dist_error.x*dist_error.x + dist_error.y*dist_error.y); _distance_to_target = dist_error_total; // for reporting purposes if( dist_error_total > 2.0f*linear_distance ) { vel_sqrt = safe_sqrt(2.0f*_wp_accel_cms*(dist_error_total-linear_distance)); desired_vel.x = vel_sqrt * dist_error.x/dist_error_total; desired_vel.y = vel_sqrt * dist_error.y/dist_error_total; }else{ desired_vel.x = _pid_pos_lat->kP() * dist_error.x; desired_vel.y = _pid_pos_lon->kP() * dist_error.y; } // ensure velocity stays within limits vel_total = safe_sqrt(desired_vel.x*desired_vel.x + desired_vel.y*desired_vel.y); if( vel_total > max_speed_cms ) { desired_vel.x = max_speed_cms * desired_vel.x/vel_total; desired_vel.y = max_speed_cms * desired_vel.y/vel_total; } // feed forward velocity request desired_vel.x += _target_vel.x; desired_vel.y += _target_vel.y; } } /// get_loiter_velocity_to_acceleration - loiter velocity controller /// converts desired velocities in lat/lon directions to accelerations in lat/lon frame void AC_WPNav::get_loiter_velocity_to_acceleration(float vel_lat, float vel_lon, float dt) { const Vector3f &vel_curr = _inav->get_velocity(); // current velocity in cm/s Vector3f vel_error; // The velocity error in cm/s. float accel_total; // total acceleration in cm/s/s // reset last velocity if this controller has just been engaged or dt is zero if( dt == 0.0f ) { desired_accel.x = 0; desired_accel.y = 0; } else { // feed forward desired acceleration calculation desired_accel.x = (vel_lat - _vel_last.x)/dt; desired_accel.y = (vel_lon - _vel_last.y)/dt; } // store this iteration's velocities for the next iteration _vel_last.x = vel_lat; _vel_last.y = vel_lon; // calculate velocity error vel_error.x = vel_lat - vel_curr.x; vel_error.y = vel_lon - vel_curr.y; // combine feed foward accel with PID outpu from velocity error desired_accel.x += _pid_rate_lat->get_pid(vel_error.x, dt); desired_accel.y += _pid_rate_lon->get_pid(vel_error.y, dt); // scale desired acceleration if it's beyond acceptable limit accel_total = safe_sqrt(desired_accel.x*desired_accel.x + desired_accel.y*desired_accel.y); if( accel_total > WPNAV_ACCEL_MAX ) { desired_accel.x = WPNAV_ACCEL_MAX * desired_accel.x/accel_total; desired_accel.y = WPNAV_ACCEL_MAX * desired_accel.y/accel_total; } } /// get_loiter_acceleration_to_lean_angles - loiter acceleration controller /// converts desired accelerations provided in lat/lon frame to roll/pitch angles void AC_WPNav::get_loiter_acceleration_to_lean_angles(float accel_lat, float accel_lon) { float z_accel_meas = -GRAVITY_MSS * 100; // gravity in cm/s/s float accel_forward; float accel_right; // To-Do: add 1hz filter to accel_lat, accel_lon // rotate accelerations into body forward-right frame accel_forward = accel_lat*_cos_yaw + accel_lon*_sin_yaw; accel_right = -accel_lat*_sin_yaw + accel_lon*_cos_yaw; // update angle targets that will be passed to stabilize controller _desired_roll = constrain_float(fast_atan(accel_right*_cos_pitch/(-z_accel_meas))*(18000/M_PI_F), -_lean_angle_max_cd, _lean_angle_max_cd); _desired_pitch = constrain_float(fast_atan(-accel_forward/(-z_accel_meas))*(18000/M_PI_F), -_lean_angle_max_cd, _lean_angle_max_cd); } // get_bearing_cd - return bearing in centi-degrees between two positions // To-Do: move this to math library float AC_WPNav::get_bearing_cd(const Vector3f &origin, const Vector3f &destination) const { float bearing = 9000 + atan2f(-(destination.x-origin.x), destination.y-origin.y) * 5729.57795f; if (bearing < 0) { bearing += 36000; } return bearing; } /// reset_I - clears I terms from loiter PID controller void AC_WPNav::reset_I() { _pid_pos_lon->reset_I(); _pid_pos_lat->reset_I(); _pid_rate_lon->reset_I(); _pid_rate_lat->reset_I(); // set last velocity to current velocity _vel_last = _inav->get_velocity(); } /// calculate_wp_leash_length - calculates horizontal and vertical leash lengths for waypoint controller void AC_WPNav::calculate_wp_leash_length(bool climb) { // get loiter position P float kP = _pid_pos_lat->kP(); // sanity check acceleration and avoid divide by zero if (_wp_accel_cms <= 0.0f) { _wp_accel_cms = WPNAV_ACCELERATION_MIN; } // avoid divide by zero if (kP <= 0.0f) { _wp_leash_xy = WPNAV_MIN_LEASH_LENGTH; return; } // calculate horiztonal leash length if(_wp_speed_cms <= _wp_accel_cms / kP) { // linear leash length based on speed close in _wp_leash_xy = _wp_speed_cms / kP; }else{ // leash length grows at sqrt of speed further out _wp_leash_xy = (_wp_accel_cms / (2.0f*kP*kP)) + (_wp_speed_cms*_wp_speed_cms / (2.0f*_wp_accel_cms)); } // ensure leash is at least 1m long if( _wp_leash_xy < WPNAV_MIN_LEASH_LENGTH ) { _wp_leash_xy = WPNAV_MIN_LEASH_LENGTH; } // calculate vertical leash length float speed_vert; if( climb ) { speed_vert = _wp_speed_up_cms; }else{ speed_vert = _wp_speed_down_cms; } if(speed_vert <= WPNAV_ALT_HOLD_ACCEL_MAX / _althold_kP) { // linear leash length based on speed close in _wp_leash_z = speed_vert / _althold_kP; }else{ // leash length grows at sqrt of speed further out _wp_leash_z = (WPNAV_ALT_HOLD_ACCEL_MAX / (2.0*_althold_kP*_althold_kP)) + (speed_vert*speed_vert / (2*WPNAV_ALT_HOLD_ACCEL_MAX)); } // ensure leash is at least 1m long if( _wp_leash_z < WPNAV_MIN_LEASH_LENGTH ) { _wp_leash_z = WPNAV_MIN_LEASH_LENGTH; } // length of the unit direction vector in the horizontal float pos_delta_unit_xy = sqrt(_pos_delta_unit.x*_pos_delta_unit.x+_pos_delta_unit.y*_pos_delta_unit.y); float pos_delta_unit_z = fabsf(_pos_delta_unit.z); // calculate the maximum acceleration, maximum velocity, and leash length in the direction of travel if(pos_delta_unit_z == 0 && pos_delta_unit_xy == 0){ _track_accel = 0; _track_speed = 0; _track_leash_length = WPNAV_MIN_LEASH_LENGTH; }else if(_pos_delta_unit.z == 0){ _track_accel = _wp_accel_cms/pos_delta_unit_xy; _track_speed = _wp_speed_cms/pos_delta_unit_xy; _track_leash_length = _wp_leash_xy/pos_delta_unit_xy; }else if(pos_delta_unit_xy == 0){ _track_accel = WPNAV_ALT_HOLD_ACCEL_MAX/pos_delta_unit_z; _track_speed = speed_vert/pos_delta_unit_z; _track_leash_length = _wp_leash_z/pos_delta_unit_z; }else{ _track_accel = min(WPNAV_ALT_HOLD_ACCEL_MAX/pos_delta_unit_z, _wp_accel_cms/pos_delta_unit_xy); _track_speed = min(speed_vert/pos_delta_unit_z, _wp_speed_cms/pos_delta_unit_xy); _track_leash_length = min(_wp_leash_z/pos_delta_unit_z, _wp_leash_xy/pos_delta_unit_xy); } }