// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifndef __RANGEFINDER_H__
#define __RANGEFINDER_H__
#include
#include
#include
#include
// Maximum number of range finder instances available on this platform
#define RANGEFINDER_MAX_INSTANCES 2
#define RANGEFINDER_GROUND_CLEARANCE_CM_DEFAULT 10
#define RANGEFINDER_PREARM_ALT_MAX_CM 200
#define RANGEFINDER_PREARM_REQUIRED_CHANGE_CM 50
class AP_RangeFinder_Backend;
class RangeFinder
{
public:
friend class AP_RangeFinder_Backend;
RangeFinder(void) :
primary_instance(0),
num_instances(0),
estimated_terrain_height(0)
{
AP_Param::setup_object_defaults(this, var_info);
}
// RangeFinder driver types
enum RangeFinder_Type {
RangeFinder_TYPE_NONE = 0,
RangeFinder_TYPE_ANALOG = 1,
RangeFinder_TYPE_MBI2C = 2,
RangeFinder_TYPE_PLI2C = 3,
RangeFinder_TYPE_PX4 = 4,
RangeFinder_TYPE_PX4_PWM= 5
};
enum RangeFinder_Function {
FUNCTION_LINEAR = 0,
FUNCTION_INVERTED = 1,
FUNCTION_HYPERBOLA = 2
};
enum RangeFinder_Status {
RangeFinder_NotConnected = 0,
RangeFinder_NoData,
RangeFinder_OutOfRangeLow,
RangeFinder_OutOfRangeHigh,
RangeFinder_Good
};
// The RangeFinder_State structure is filled in by the backend driver
struct RangeFinder_State {
uint8_t instance; // the instance number of this RangeFinder
uint16_t distance_cm; // distance: in cm
uint16_t voltage_mv; // voltage in millivolts,
// if applicable, otherwise 0
enum RangeFinder_Status status; // sensor status
uint8_t range_valid_count; // number of consecutive valid readings (maxes out at 10)
bool pre_arm_check; // true if sensor has passed pre-arm checks
uint16_t pre_arm_distance_min; // min distance captured during pre-arm checks
uint16_t pre_arm_distance_max; // max distance captured during pre-arm checks
};
// parameters for each instance
AP_Int8 _type[RANGEFINDER_MAX_INSTANCES];
AP_Int8 _pin[RANGEFINDER_MAX_INSTANCES];
AP_Int8 _ratiometric[RANGEFINDER_MAX_INSTANCES];
AP_Int8 _stop_pin[RANGEFINDER_MAX_INSTANCES];
AP_Int16 _settle_time_ms[RANGEFINDER_MAX_INSTANCES];
AP_Float _scaling[RANGEFINDER_MAX_INSTANCES];
AP_Float _offset[RANGEFINDER_MAX_INSTANCES];
AP_Int8 _function[RANGEFINDER_MAX_INSTANCES];
AP_Int16 _min_distance_cm[RANGEFINDER_MAX_INSTANCES];
AP_Int16 _max_distance_cm[RANGEFINDER_MAX_INSTANCES];
AP_Int8 _ground_clearance_cm[RANGEFINDER_MAX_INSTANCES];
AP_Int16 _powersave_range;
static const struct AP_Param::GroupInfo var_info[];
// Return the number of range finder instances
uint8_t num_sensors(void) const {
return num_instances;
}
// detect and initialise any available rangefinders
void init(void);
// update state of all rangefinders. Should be called at around
// 10Hz from main loop
void update(void);
#define _RangeFinder_STATE(instance) state[instance]
uint16_t distance_cm(uint8_t instance) const {
return _RangeFinder_STATE(instance).distance_cm;
}
uint16_t distance_cm() const {
return distance_cm(primary_instance);
}
uint16_t voltage_mv(uint8_t instance) const {
return _RangeFinder_STATE(instance).voltage_mv;
}
uint16_t voltage_mv() const {
return voltage_mv(primary_instance);
}
int16_t max_distance_cm(uint8_t instance) const {
return _max_distance_cm[instance];
}
int16_t max_distance_cm() const {
return max_distance_cm(primary_instance);
}
int16_t min_distance_cm(uint8_t instance) const {
return _min_distance_cm[instance];
}
int16_t min_distance_cm() const {
return min_distance_cm(primary_instance);
}
int16_t ground_clearance_cm(uint8_t instance) const {
return _ground_clearance_cm[instance];
}
int16_t ground_clearance_cm() const {
return _ground_clearance_cm[primary_instance];
}
// query status
RangeFinder_Status status(uint8_t instance) const;
RangeFinder_Status status(void) const {
return status(primary_instance);
}
// true if sensor is returning data
bool has_data(uint8_t instance) const;
bool has_data() const {
return has_data(primary_instance);
}
// returns count of consecutive good readings
uint8_t range_valid_count() const {
return range_valid_count(primary_instance);
}
uint8_t range_valid_count(uint8_t instance) const {
return _RangeFinder_STATE(instance).range_valid_count;
}
/*
set an externally estimated terrain height. Used to enable power
saving (where available) at high altitudes.
*/
void set_estimated_terrain_height(float height) {
estimated_terrain_height = height;
}
/*
returns true if pre-arm checks have passed for all range finders
these checks involve the user lifting or rotating the vehicle so that sensor readings between
the min and 2m can be captured
*/
bool pre_arm_check() const;
private:
RangeFinder_State state[RANGEFINDER_MAX_INSTANCES];
AP_RangeFinder_Backend *drivers[RANGEFINDER_MAX_INSTANCES];
uint8_t primary_instance:2;
uint8_t num_instances:2;
float estimated_terrain_height;
void detect_instance(uint8_t instance);
void update_instance(uint8_t instance);
void update_pre_arm_check(uint8_t instance);
};
#endif // __RANGEFINDER_H__