// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // Swift Navigation SBP GPS driver for ArduPilot. // Code by Niels Joubert // // Swift Binary Protocol format: http://docs.swift-nav.com/ // #include #include "AP_GPS_SBP.h" #include #if GPS_RTK_AVAILABLE extern const AP_HAL::HAL& hal; #define SBP_DEBUGGING 1 #define SBP_HW_LOGGING 1 #define SBP_TIMEOUT_HEATBEAT 4000 #define SBP_TIMEOUT_PVT 500 #if SBP_DEBUGGING # define Debug(fmt, args ...) \ do { \ hal.console->printf("%s:%d: " fmt "\n", \ __FUNCTION__, __LINE__, \ ## args); \ hal.scheduler->delay(1); \ } while(0) #else # define Debug(fmt, args ...) #endif bool AP_GPS_SBP::logging_started = false; AP_GPS_SBP::AP_GPS_SBP(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_HAL::UARTDriver *_port) : AP_GPS_Backend(_gps, _state, _port), crc_error_counter(0), last_full_update_tow(0), last_full_update_cpu_ms(0), last_injected_data_ms(0), last_iar_num_hypotheses(0) { Debug("SBP Driver Initialized"); parser_state.state = sbp_parser_state_t::WAITING; //Externally visible state state.status = AP_GPS::NO_FIX; state.have_vertical_velocity = true; state.last_gps_time_ms = last_heatbeat_received_ms = hal.scheduler->millis(); } // Process all bytes available from the stream // bool AP_GPS_SBP::read(void) { //Invariant: Calling this function processes *all* data current in the UART buffer. // //IMPORTANT NOTICE: This function is NOT CALLED for several seconds // during arming. That should not cause the driver to die. Process *all* waiting messages _sbp_process(); return _attempt_state_update(); } void AP_GPS_SBP::inject_data(uint8_t *data, uint8_t len) { if (port->txspace() > len) { last_injected_data_ms = hal.scheduler->millis(); port->write(data, len); } else { Debug("PIKSI: Not enough TXSPACE"); } } //This attempts to reads all SBP messages from the incoming port. //Returns true if a new message was read, false if we failed to read a message. void AP_GPS_SBP::_sbp_process() { while (port->available() > 0) { uint8_t temp = port->read(); uint16_t crc; //This switch reads one character at a time, //parsing it into buffers until a full message is dispatched switch(parser_state.state) { case sbp_parser_state_t::WAITING: if (temp == SBP_PREAMBLE) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_TYPE; } break; case sbp_parser_state_t::GET_TYPE: *((uint8_t*)&(parser_state.msg_type) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= 2) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_SENDER; } break; case sbp_parser_state_t::GET_SENDER: *((uint8_t*)&(parser_state.sender_id) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= 2) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_LEN; } break; case sbp_parser_state_t::GET_LEN: parser_state.msg_len = temp; parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_MSG; break; case sbp_parser_state_t::GET_MSG: *((uint8_t*)&(parser_state.msg_buff) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= parser_state.msg_len) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_CRC; } break; case sbp_parser_state_t::GET_CRC: *((uint8_t*)&(parser_state.crc) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= 2) { parser_state.state = sbp_parser_state_t::WAITING; crc = crc16_ccitt((uint8_t*)&(parser_state.msg_type), 2, 0); crc = crc16_ccitt((uint8_t*)&(parser_state.sender_id), 2, crc); crc = crc16_ccitt(&(parser_state.msg_len), 1, crc); crc = crc16_ccitt(parser_state.msg_buff, parser_state.msg_len, crc); if (parser_state.crc == crc) { _sbp_process_message(); } else { Debug("CRC Error Occurred!"); crc_error_counter += 1; } parser_state.state = sbp_parser_state_t::WAITING; } break; default: parser_state.state = sbp_parser_state_t::WAITING; break; } } } //INVARIANT: A fully received message with correct CRC is currently in parser_state void AP_GPS_SBP::_sbp_process_message() { switch(parser_state.msg_type) { case SBP_HEARTBEAT_MSGTYPE: last_heatbeat_received_ms = hal.scheduler->millis(); break; case SBP_GPS_TIME_MSGTYPE: memcpy(&last_gps_time, parser_state.msg_buff, sizeof(last_gps_time)); break; case SBP_VEL_NED_MSGTYPE: memcpy(&last_vel_ned, parser_state.msg_buff, sizeof(last_vel_ned)); break; case SBP_POS_LLH_MSGTYPE: { struct sbp_pos_llh_t *pos_llh = (struct sbp_pos_llh_t*)parser_state.msg_buff; // Check if this is a single point or RTK solution // flags = 0 -> single point if (pos_llh->flags == 0) { last_pos_llh_spp = *pos_llh; } else if (pos_llh->flags == 1 || pos_llh->flags == 2) { last_pos_llh_rtk = *pos_llh; } break; } case SBP_DOPS_MSGTYPE: memcpy(&last_dops, parser_state.msg_buff, sizeof(last_dops)); break; case SBP_TRACKING_STATE_MSGTYPE: //INTENTIONALLY BLANK //Currenly unhandled, but logged after switch statement. break; case SBP_IAR_STATE_MSGTYPE: { sbp_iar_state_t *iar = (struct sbp_iar_state_t*)parser_state.msg_buff; last_iar_num_hypotheses = iar->num_hypotheses; break; } default: // Break out of any logging if it's an unsupported message return; } logging_log_raw_sbp(parser_state.msg_type, parser_state.sender_id, parser_state.msg_len, parser_state.msg_buff); } bool AP_GPS_SBP::_attempt_state_update() { // If we currently have heartbeats // - NO FIX // // If we have a full update available, save it // uint32_t now = hal.scheduler->millis(); bool ret = false; if (now - last_heatbeat_received_ms > SBP_TIMEOUT_HEATBEAT) { state.status = AP_GPS::NO_GPS; Debug("No Heartbeats from Piksi! Driver Ready to Die!"); ret = false; } else if (last_pos_llh_rtk.tow == last_vel_ned.tow && abs((int32_t) (last_gps_time.tow - last_vel_ned.tow)) < 10000 && abs((int32_t) (last_dops.tow - last_vel_ned.tow)) < 60000 && last_vel_ned.tow > last_full_update_tow) { // Use the RTK position sbp_pos_llh_t *pos_llh = &last_pos_llh_rtk; // Update time state state.time_week = last_gps_time.wn; state.time_week_ms = last_vel_ned.tow; state.hdop = last_dops.hdop; // Update velocity state state.velocity[0] = (float)(last_vel_ned.n / 1000.0); state.velocity[1] = (float)(last_vel_ned.e / 1000.0); state.velocity[2] = (float)(last_vel_ned.d / 1000.0); float ground_vector_sq = state.velocity[0]*state.velocity[0] + state.velocity[1]*state.velocity[1]; state.ground_speed = safe_sqrt(ground_vector_sq); state.ground_course_cd = (int32_t) 100*ToDeg(atan2f(state.velocity[1], state.velocity[0])); if (state.ground_course_cd < 0) { state.ground_course_cd += 36000; } // Update position state state.location.lat = (int32_t) (pos_llh->lat*1e7); state.location.lng = (int32_t) (pos_llh->lon*1e7); state.location.alt = (int32_t) (pos_llh->height*1e2); state.num_sats = pos_llh->n_sats; if (pos_llh->flags == 0) state.status = AP_GPS::GPS_OK_FIX_3D; else if (pos_llh->flags == 2) state.status = AP_GPS::GPS_OK_FIX_3D_DGPS; else if (pos_llh->flags == 1) state.status = AP_GPS::GPS_OK_FIX_3D_RTK; last_full_update_tow = last_vel_ned.tow; last_full_update_cpu_ms = now; logging_log_full_update(); ret = true; } else if (now - last_full_update_cpu_ms > SBP_TIMEOUT_PVT) { //INVARIANT: If we currently have a fix, ONLY return true after a full update. state.status = AP_GPS::NO_FIX; ret = true; } else { //No timeouts yet, no data yet, nothing has happened. ret = false; } return ret; } bool AP_GPS_SBP::_detect(struct SBP_detect_state &state, uint8_t data) { // This switch reads one character at a time, if we find something that // looks like our preamble we'll try to read the full message length, // calculating the CRC. If the CRC matches, we have an SBP GPS! switch(state.state) { case SBP_detect_state::WAITING: if (data == SBP_PREAMBLE) { state.n_read = 0; state.crc_so_far = 0; state.state = SBP_detect_state::GET_TYPE; } break; case SBP_detect_state::GET_TYPE: state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.n_read += 1; if (state.n_read >= 2) { state.n_read = 0; state.state = SBP_detect_state::GET_SENDER; } break; case SBP_detect_state::GET_SENDER: state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.n_read += 1; if (state.n_read >= 2) { state.n_read = 0; state.state = SBP_detect_state::GET_LEN; } break; case SBP_detect_state::GET_LEN: state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.msg_len = data; state.n_read = 0; state.state = SBP_detect_state::GET_MSG; break; case SBP_detect_state::GET_MSG: state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.n_read += 1; if (state.n_read >= state.msg_len) { state.n_read = 0; state.state = SBP_detect_state::GET_CRC; } break; case SBP_detect_state::GET_CRC: *((uint8_t*)&(state.crc) + state.n_read) = data; state.n_read += 1; if (state.n_read >= 2) { state.state = SBP_detect_state::WAITING; return state.crc == state.crc_so_far; } break; default: state.state = SBP_detect_state::WAITING; break; } return false; } #if SBP_HW_LOGGING #define LOG_MSG_SBPHEALTH 202 #define LOG_MSG_SBPLLH 203 #define LOG_MSG_SBPBASELINE 204 #define LOG_MSG_SBPTRACKING1 205 #define LOG_MSG_SBPTRACKING2 206 #define LOG_MSG_SBPRAW1 207 #define LOG_MSG_SBPRAW2 208 struct PACKED log_SbpLLH { LOG_PACKET_HEADER; uint32_t timestamp; uint32_t tow; int32_t lat; int32_t lon; int32_t alt; uint8_t n_sats; uint8_t flags; }; struct PACKED log_SbpHealth { LOG_PACKET_HEADER; uint32_t timestamp; uint32_t crc_error_counter; uint32_t last_injected_data_ms; uint32_t last_iar_num_hypotheses; }; struct PACKED log_SbpRAW1 { LOG_PACKET_HEADER; uint32_t timestamp; uint16_t msg_type; uint16_t sender_id; uint8_t msg_len; uint8_t data1[64]; }; struct PACKED log_SbpRAW2 { LOG_PACKET_HEADER; uint32_t timestamp; uint16_t msg_type; uint8_t data2[192]; }; static const struct LogStructure sbp_log_structures[] PROGMEM = { { LOG_MSG_SBPHEALTH, sizeof(log_SbpHealth), "SBPH", "IIII", "TimeMS,CrcError,LastInject,IARhyp" }, { LOG_MSG_SBPRAW1, sizeof(log_SbpRAW1), "SBR1", "IHHBZ", "TimeMS,msg_type,sender_id,msg_len,d1" }, { LOG_MSG_SBPRAW2, sizeof(log_SbpRAW2), "SBR2", "IHZZZ", "TimeMS,msg_type,d2,d3,d4" } }; void AP_GPS_SBP::logging_write_headers(void) { if (!logging_started) { logging_started = true; gps._DataFlash->AddLogFormats(sbp_log_structures, sizeof(sbp_log_structures) / sizeof(LogStructure)); } } void AP_GPS_SBP::logging_log_full_update() { if (gps._DataFlash == NULL || !gps._DataFlash->logging_started()) { return; } logging_write_headers(); struct log_SbpHealth pkt = { LOG_PACKET_HEADER_INIT(LOG_MSG_SBPHEALTH), timestamp : hal.scheduler->millis(), crc_error_counter : crc_error_counter, last_injected_data_ms : last_injected_data_ms, last_iar_num_hypotheses : last_iar_num_hypotheses, }; gps._DataFlash->WriteBlock(&pkt, sizeof(pkt)); }; void AP_GPS_SBP::logging_log_raw_sbp(uint16_t msg_type, uint16_t sender_id, uint8_t msg_len, uint8_t *msg_buff) { if (gps._DataFlash == NULL || !gps._DataFlash->logging_started()) { return; } //MASK OUT MESSAGES WE DON'T WANT TO LOG if (( ((uint16_t) gps._sbp_logmask) & msg_type) == 0) { return; } logging_write_headers(); uint32_t now = hal.scheduler->millis(); struct log_SbpRAW1 pkt = { LOG_PACKET_HEADER_INIT(LOG_MSG_SBPRAW1), timestamp : now, msg_type : msg_type, sender_id : sender_id, msg_len : msg_len, }; memcpy(pkt.data1, msg_buff, max(msg_len,64)); gps._DataFlash->WriteBlock(&pkt, sizeof(pkt)); if (msg_len > 64) { struct log_SbpRAW2 pkt2 = { LOG_PACKET_HEADER_INIT(LOG_MSG_SBPRAW2), timestamp : now, msg_type : msg_type, }; memcpy(pkt2.data2, &msg_buff[64], msg_len - 64); gps._DataFlash->WriteBlock(&pkt2, sizeof(pkt2)); } }; #endif // SBP_HW_LOGGING #endif // GPS_RTK_AVAILABLE