/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* parent class for aircraft simulators */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #include "SIM_Aircraft.h" #include #include #include /* parent class for all simulator types */ /* constructor */ Aircraft::Aircraft(const char *home_str, const char *frame_str) : ground_level(0), frame_height(0), dcm(), gyro(), velocity_ef(), mass(0), accel_body(0, 0, -GRAVITY_MSS), time_now_us(0), gyro_noise(radians(0.1f)), accel_noise(0.3), rate_hz(400) { char *saveptr=NULL; char *s = strdup(home_str); char *lat_s = strtok_r(s, ",", &saveptr); char *lon_s = strtok_r(NULL, ",", &saveptr); char *alt_s = strtok_r(NULL, ",", &saveptr); char *yaw_s = strtok_r(NULL, ",", &saveptr); memset(&home, 0, sizeof(home)); home.lat = atof(lat_s) * 1.0e7; home.lng = atof(lon_s) * 1.0e7; home.alt = atof(alt_s) * 1.0e2; location = home; ground_level = home.alt*0.01; dcm.from_euler(0, 0, atof(yaw_s)); free(s); set_speedup(1); } /* return true if we are on the ground */ bool Aircraft::on_ground(const Vector3f &pos) const { return (-pos.z) + home.alt*0.01f <= ground_level + frame_height; } /* update location from position */ void Aircraft::update_position(void) { float bearing = degrees(atan2f(position.y, position.x)); float distance = sqrtf(sq(position.x) + sq(position.y)); location = home; location_update(location, bearing, distance); location.alt = home.alt - position.z*100.0f; time_now_us += frame_time_us; sync_frame_time(); } /* rotate to the given yaw */ void Aircraft::set_yaw_degrees(float yaw_degrees) { float roll, pitch, yaw; dcm.to_euler(&roll, &pitch, &yaw); yaw = radians(yaw_degrees); dcm.from_euler(roll, pitch, yaw); } /* advance time by deltat in seconds */ void Aircraft::time_advance(float deltat) { time_now_us += deltat * 1.0e6f; } /* setup the frame step time */ void Aircraft::setup_frame_time(float new_rate, float new_speedup) { rate_hz = new_rate; target_speedup = new_speedup; frame_time_us = 1.0e6f/rate_hz; scaled_frame_time_us = frame_time_us/target_speedup; last_wall_time_us = get_wall_time_us(); achieved_rate_hz = rate_hz; } /* adjust frame_time calculation */ void Aircraft::adjust_frame_time(float new_rate) { rate_hz = new_rate; frame_time_us = 1.0e6f/rate_hz; scaled_frame_time_us = frame_time_us/target_speedup; } /* try to synchronise simulation time with wall clock time, taking into account desired speedup */ void Aircraft::sync_frame_time(void) { uint64_t now = get_wall_time_us(); uint64_t dt_us = now - last_wall_time_us; if (dt_us < scaled_frame_time_us) { usleep(scaled_frame_time_us - dt_us); now = get_wall_time_us(); if (now > last_wall_time_us && now - last_wall_time_us < 1.0e5) { float rate = 1.0e6f/(now - last_wall_time_us); achieved_rate_hz = (0.98f*achieved_rate_hz) + (0.02f*rate); if (achieved_rate_hz < rate_hz * target_speedup) { scaled_frame_time_us *= 0.999; } else { scaled_frame_time_us *= 1.001; } } } last_wall_time_us = now; } /* add noise based on throttle level (from 0..1) */ void Aircraft::add_noise(float throttle) { gyro += Vector3f(rand_normal(0, 1), rand_normal(0, 1), rand_normal(0, 1)) * gyro_noise * throttle; accel_body += Vector3f(rand_normal(0, 1), rand_normal(0, 1), rand_normal(0, 1)) * accel_noise * throttle; } /* normal distribution random numbers See http://en.literateprograms.org/index.php?title=Special:DownloadCode/Box-Muller_transform_%28C%29&oldid=7011 */ double Aircraft::rand_normal(double mean, double stddev) { static double n2 = 0.0; static int n2_cached = 0; if (!n2_cached) { double x, y, r; do { x = 2.0*rand()/RAND_MAX - 1; y = 2.0*rand()/RAND_MAX - 1; r = x*x + y*y; } while (r == 0.0 || r > 1.0); { double d = sqrt(-2.0*log(r)/r); double n1 = x*d; n2 = y*d; double result = n1*stddev + mean; n2_cached = 1; return result; } } else { n2_cached = 0; return n2*stddev + mean; } } /* fill a sitl_fdm structure from the simulator state */ void Aircraft::fill_fdm(struct sitl_fdm &fdm) const { fdm.timestamp_us = time_now_us; fdm.latitude = location.lat * 1.0e-7; fdm.longitude = location.lng * 1.0e-7; fdm.altitude = location.alt * 1.0e-2; fdm.heading = degrees(atan2f(velocity_ef.y, velocity_ef.x)); fdm.speedN = velocity_ef.x; fdm.speedE = velocity_ef.y; fdm.speedD = velocity_ef.z; fdm.xAccel = accel_body.x; fdm.yAccel = accel_body.y; fdm.zAccel = accel_body.z; Vector3f gyro_ef = SITL::convert_earth_frame(dcm, gyro); fdm.rollRate = degrees(gyro_ef.x); fdm.pitchRate = degrees(gyro_ef.y); fdm.yawRate = degrees(gyro_ef.z); float r, p, y; dcm.to_euler(&r, &p, &y); fdm.rollDeg = degrees(r); fdm.pitchDeg = degrees(p); fdm.yawDeg = degrees(y); fdm.airspeed = velocity_ef.length(); fdm.magic = 0x4c56414f; } uint64_t Aircraft::get_wall_time_us() const { struct timeval tp; gettimeofday(&tp,NULL); return tp.tv_sec*1.0e6 + tp.tv_usec; } /* set simulation speedup */ void Aircraft::set_speedup(float speedup) { setup_frame_time(rate_hz, speedup); } #endif // CONFIG_HAL_BOARD