/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // get_smoothing_gain - returns smoothing gain to be passed into attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth // result is a number from 2 to 12 with 2 being very sluggish and 12 being very crisp float get_smoothing_gain() { return (2.0f + (float)g.rc_feel_rp/10.0f); } // get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle // returns desired angle in centi-degrees static void get_pilot_desired_lean_angles(float roll_in, float pitch_in, float &roll_out, float &pitch_out) { float angle_max = constrain_float(aparm.angle_max,1000,8000); float scaler = (float)angle_max/(float)ROLL_PITCH_INPUT_MAX; // scale roll_in, pitch_in to correct units roll_in *= scaler; pitch_in *= scaler; // do circular limit float total_in = pythagorous2((float)pitch_in, (float)roll_in); if (total_in > angle_max) { float ratio = angle_max / total_in; roll_in *= ratio; pitch_in *= ratio; } // do lateral tilt to euler roll conversion roll_in = (18000/M_PI_F) * atanf(cosf(pitch_in*(M_PI_F/18000))*tanf(roll_in*(M_PI_F/18000))); // return roll_out = roll_in; pitch_out = pitch_in; } // get_pilot_desired_heading - transform pilot's yaw input into a desired heading // returns desired angle in centi-degrees // To-Do: return heading as a float? static float get_pilot_desired_yaw_rate(int16_t stick_angle) { // convert pilot input to the desired yaw rate return stick_angle * g.acro_yaw_p; } /************************************************************* * yaw controllers *************************************************************/ // get_roi_yaw - returns heading towards location held in roi_WP // should be called at 100hz static float get_roi_yaw() { static uint8_t roi_yaw_counter = 0; // used to reduce update rate to 100hz roi_yaw_counter++; if (roi_yaw_counter >= 4) { roi_yaw_counter = 0; yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), roi_WP); } return yaw_look_at_WP_bearing; } static float get_look_ahead_yaw() { const Vector3f& vel = inertial_nav.get_velocity(); float speed = pythagorous2(vel.x,vel.y); // Commanded Yaw to automatically look ahead. if (position_ok() && (speed > YAW_LOOK_AHEAD_MIN_SPEED)) { yaw_look_ahead_bearing = degrees(atan2f(vel.y,vel.x))*100.0f; } return yaw_look_ahead_bearing; } /************************************************************* * throttle control ****************************************************************/ // update_thr_average - update estimated throttle required to hover (if necessary) // should be called at 100hz static void update_thr_average() { // ensure throttle_average has been initialised if( AP_Math::is_zero(throttle_average) ) { throttle_average = g.throttle_mid; // update position controller pos_control.set_throttle_hover(throttle_average); } // if not armed or landed exit if (!motors.armed() || ap.land_complete) { return; } // get throttle output int16_t throttle = g.rc_3.servo_out; // calc average throttle if we are in a level hover if (throttle > g.throttle_min && abs(climb_rate) < 60 && labs(ahrs.roll_sensor) < 500 && labs(ahrs.pitch_sensor) < 500) { throttle_average = throttle_average * 0.99f + (float)throttle * 0.01f; // update position controller pos_control.set_throttle_hover(throttle_average); } } // set_throttle_takeoff - allows parents to tell throttle controller we are taking off so I terms can be cleared static void set_throttle_takeoff() { // tell position controller to reset alt target and reset I terms pos_control.init_takeoff(); // tell motors to do a slow start motors.slow_start(true); } // get_pilot_desired_throttle - transform pilot's throttle input to make cruise throttle mid stick // used only for manual throttle modes // returns throttle output 0 to 1000 static int16_t get_pilot_desired_throttle(int16_t throttle_control) { int16_t throttle_out; int16_t mid_stick = g.rc_3.get_control_mid(); // ensure reasonable throttle values throttle_control = constrain_int16(throttle_control,0,1000); g.throttle_mid = constrain_int16(g.throttle_mid,300,700); // check throttle is above, below or in the deadband if (throttle_control < mid_stick) { // below the deadband throttle_out = g.throttle_min + ((float)(throttle_control-g.throttle_min))*((float)(g.throttle_mid - g.throttle_min))/((float)(mid_stick-g.throttle_min)); }else if(throttle_control > mid_stick) { // above the deadband throttle_out = g.throttle_mid + ((float)(throttle_control-mid_stick)) * (float)(1000-g.throttle_mid) / (float)(1000-mid_stick); }else{ // must be in the deadband throttle_out = g.throttle_mid; } return throttle_out; } // get_pilot_desired_climb_rate - transform pilot's throttle input to // climb rate in cm/s. we use radio_in instead of control_in to get the full range // without any deadzone at the bottom static float get_pilot_desired_climb_rate(float throttle_control) { // throttle failsafe check if( failsafe.radio ) { return 0.0f; } float desired_rate = 0.0f; float mid_stick = g.rc_3.get_control_mid(); float deadband_top = mid_stick + g.throttle_deadzone; float deadband_bottom = mid_stick - g.throttle_deadzone; // ensure a reasonable throttle value throttle_control = constrain_float(throttle_control,g.throttle_min,1000.0f); // ensure a reasonable deadzone g.throttle_deadzone = constrain_int16(g.throttle_deadzone, 0, 400); // check throttle is above, below or in the deadband if (throttle_control < deadband_bottom) { // below the deadband desired_rate = g.pilot_velocity_z_max * (throttle_control-deadband_bottom) / (deadband_bottom-g.throttle_min); }else if (throttle_control > deadband_top) { // above the deadband desired_rate = g.pilot_velocity_z_max * (throttle_control-deadband_top) / (1000.0f-deadband_top); }else{ // must be in the deadband desired_rate = 0.0f; } // desired climb rate for logging desired_climb_rate = desired_rate; return desired_rate; } // get_non_takeoff_throttle - a throttle somewhere between min and mid throttle which should not lead to a takeoff static float get_non_takeoff_throttle() { return (g.throttle_mid / 2.0f); } static float get_takeoff_trigger_throttle() { return g.rc_3.get_control_mid() + g.takeoff_trigger_dz; } // get_throttle_pre_takeoff - convert pilot's input throttle to a throttle output before take-off // used only for althold, loiter, hybrid flight modes // returns throttle output 0 to 1000 static float get_throttle_pre_takeoff(float input_thr) { // exit immediately if input_thr is zero if (input_thr <= 0.0f) { return 0.0f; } // TODO: does this parameter sanity check really belong here? g.throttle_mid = constrain_int16(g.throttle_mid,300,700); float in_min = g.throttle_min; float in_max = get_takeoff_trigger_throttle(); float out_min = motors.get_throttle_warn(); float out_max = get_non_takeoff_throttle(); if ((g.throttle_behavior & THR_BEHAVE_FEEDBACK_FROM_MID_STICK) != 0) { in_min = g.rc_3.get_control_mid(); } float input_range = in_max-in_min; float output_range = out_max-out_min; // sanity check ranges if (input_range <= 0.0f || output_range <= 0.0f) { return 0.0f; } return constrain_float(out_min + (input_thr-in_min)*output_range/input_range, out_min, out_max); } // get_surface_tracking_climb_rate - hold copter at the desired distance above the ground // returns climb rate (in cm/s) which should be passed to the position controller static float get_surface_tracking_climb_rate(int16_t target_rate, float current_alt_target, float dt) { static uint32_t last_call_ms = 0; float distance_error; float velocity_correction; float current_alt = inertial_nav.get_altitude(); uint32_t now = millis(); // reset target altitude if this controller has just been engaged if (now - last_call_ms > SONAR_TIMEOUT_MS) { target_sonar_alt = sonar_alt + current_alt_target - current_alt; } last_call_ms = now; // adjust sonar target alt if motors have not hit their limits if ((target_rate<0 && !motors.limit.throttle_lower) || (target_rate>0 && !motors.limit.throttle_upper)) { target_sonar_alt += target_rate * dt; } // do not let target altitude get too far from current altitude above ground // Note: the 750cm limit is perhaps too wide but is consistent with the regular althold limits and helps ensure a smooth transition target_sonar_alt = constrain_float(target_sonar_alt,sonar_alt-pos_control.get_leash_down_z(),sonar_alt+pos_control.get_leash_up_z()); // calc desired velocity correction from target sonar alt vs actual sonar alt (remove the error already passed to Altitude controller to avoid oscillations) distance_error = (target_sonar_alt - sonar_alt) - (current_alt_target - current_alt); velocity_correction = distance_error * g.sonar_gain; velocity_correction = constrain_float(velocity_correction, -THR_SURFACE_TRACKING_VELZ_MAX, THR_SURFACE_TRACKING_VELZ_MAX); // return combined pilot climb rate + rate to correct sonar alt error return (target_rate + velocity_correction); } // set_accel_throttle_I_from_pilot_throttle - smoothes transition from pilot controlled throttle to autopilot throttle static void set_accel_throttle_I_from_pilot_throttle(int16_t pilot_throttle) { // shift difference between pilot's throttle and hover throttle into accelerometer I g.pid_accel_z.set_integrator(pilot_throttle-throttle_average); } // updates position controller's maximum altitude using fence and EKF limits static void update_poscon_alt_max() { float alt_limit_cm = 0.0f; // interpreted as no limit if left as zero #if AC_FENCE == ENABLED // set fence altitude limit in position controller if ((fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) { alt_limit_cm = pv_alt_above_origin(fence.get_safe_alt()*100.0f); } #endif // get alt limit from EKF (limited during optical flow flight) float ekf_limit_cm = 0.0f; if (inertial_nav.get_hgt_ctrl_limit(ekf_limit_cm)) { if ((alt_limit_cm <= 0.0f) || (ekf_limit_cm < alt_limit_cm)) { alt_limit_cm = ekf_limit_cm; } } // pass limit to pos controller pos_control.set_alt_max(alt_limit_cm); }