// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /***************************************** * Throttle slew limit *****************************************/ static void throttle_slew_limit(int16_t last_throttle) { // if slew limit rate is set to zero then do not slew limit if (g.throttle_slewrate) { // limit throttle change by the given percentage per second float temp = g.throttle_slewrate * G_Dt * 0.01f * fabsf(channel_throttle->radio_max - channel_throttle->radio_min); // allow a minimum change of 1 PWM per cycle if (temp < 1) { temp = 1; } channel_throttle->radio_out = constrain_int16(channel_throttle->radio_out, last_throttle - temp, last_throttle + temp); } } /* check for triggering of start of auto mode */ static bool auto_check_trigger(void) { // only applies to AUTO mode if (control_mode != AUTO) { return true; } // check for user pressing the auto trigger to off if (auto_triggered && g.auto_trigger_pin != -1 && check_digital_pin(g.auto_trigger_pin) == 1) { gcs_send_text_P(SEVERITY_LOW, PSTR("AUTO triggered off")); auto_triggered = false; return false; } // if already triggered, then return true, so you don't // need to hold the switch down if (auto_triggered) { return true; } if (g.auto_trigger_pin == -1 && g.auto_kickstart == 0.0f) { // no trigger configured - let's go! auto_triggered = true; return true; } if (g.auto_trigger_pin != -1 && check_digital_pin(g.auto_trigger_pin) == 0) { gcs_send_text_P(SEVERITY_LOW, PSTR("Triggered AUTO with pin")); auto_triggered = true; return true; } if (g.auto_kickstart != 0.0f) { float xaccel = ins.get_accel().x; if (xaccel >= g.auto_kickstart) { gcs_send_text_fmt(PSTR("Triggered AUTO xaccel=%.1f"), xaccel); auto_triggered = true; return true; } } return false; } /* calculate the throtte for auto-throttle modes */ static void calc_throttle(float target_speed) { if (!auto_check_trigger()) { channel_throttle->servo_out = g.throttle_min.get(); return; } if (target_speed <= 0) { // cope with zero requested speed channel_throttle->servo_out = g.throttle_min.get(); return; } int throttle_target = g.throttle_cruise + throttle_nudge; /* reduce target speed in proportion to turning rate, up to the SPEED_TURN_GAIN percentage. */ float steer_rate = fabsf(lateral_acceleration / (g.turn_max_g*GRAVITY_MSS)); steer_rate = constrain_float(steer_rate, 0.0, 1.0); float reduction = 1.0 - steer_rate*(100 - g.speed_turn_gain)*0.01; if (control_mode >= AUTO && wp_distance <= g.speed_turn_dist) { // in auto-modes we reduce speed when approaching waypoints float reduction2 = 1.0 - (100-g.speed_turn_gain)*0.01*((g.speed_turn_dist - wp_distance)/g.speed_turn_dist); if (reduction2 < reduction) { reduction = reduction2; } } // reduce the target speed by the reduction factor target_speed *= reduction; groundspeed_error = target_speed - ground_speed; throttle = throttle_target + (g.pidSpeedThrottle.get_pid(groundspeed_error * 100) / 100); // also reduce the throttle by the reduction factor. This gives a // much faster response in turns throttle *= reduction; channel_throttle->servo_out = constrain_int16(throttle, g.throttle_min.get(), g.throttle_max.get()); } /***************************************** * Calculate desired turn angles (in medium freq loop) *****************************************/ static void calc_lateral_acceleration() { switch (control_mode) { case AUTO: nav_controller->update_waypoint(prev_WP, next_WP); break; case RTL: case GUIDED: case STEERING: nav_controller->update_waypoint(current_loc, next_WP); break; default: return; } // Calculate the required turn of the wheels // negative error = left turn // positive error = right turn lateral_acceleration = nav_controller->lateral_acceleration(); } /* calculate steering angle given lateral_acceleration */ static void calc_nav_steer() { float speed = g_gps->ground_speed_cm * 0.01f; float steer; if (speed < 1.0f) { // gps speed isn't very accurate at low speed speed = 1.0f; } // add in obstacle avoidance lateral_acceleration += (obstacle.turn_angle/45.0f) * g.turn_max_g; // constrain to max G force lateral_acceleration = constrain_float(lateral_acceleration, -g.turn_max_g*GRAVITY_MSS, g.turn_max_g*GRAVITY_MSS); // this is a linear approximation of the inverse steering // equation for a rover. It returns steering as a proportion // from -1 to 1 steer = 0.5 * lateral_acceleration * g.turn_circle / (speed*speed); steer = constrain_float(steer, -1, 1); channel_steer->servo_out = steer * 4500; } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ static void set_servos(void) { int16_t last_throttle = channel_throttle->radio_out; if ((control_mode == MANUAL || control_mode == LEARNING) && (g.skid_steer_out == g.skid_steer_in)) { // do a direct pass through of radio values channel_steer->radio_out = channel_steer->read(); channel_throttle->radio_out = channel_throttle->read(); if (failsafe.bits & FAILSAFE_EVENT_THROTTLE) { // suppress throttle if in failsafe and manual channel_throttle->radio_out = channel_throttle->radio_trim; } } else { channel_steer->calc_pwm(); channel_throttle->servo_out = constrain_int16(channel_throttle->servo_out, g.throttle_min.get(), g.throttle_max.get()); if ((failsafe.bits & FAILSAFE_EVENT_THROTTLE) && control_mode < AUTO) { // suppress throttle if in failsafe channel_throttle->servo_out = 0; } // convert 0 to 100% into PWM channel_throttle->calc_pwm(); // limit throttle movement speed throttle_slew_limit(last_throttle); if (g.skid_steer_out) { // convert the two radio_out values to skid steering values /* mixing rule: steering = motor1 - motor2 throttle = 0.5*(motor1 + motor2) motor1 = throttle + 0.5*steering motor2 = throttle - 0.5*steering */ float steering_scaled = channel_steer->norm_output(); float throttle_scaled = channel_throttle->norm_output(); float motor1 = throttle_scaled + 0.5*steering_scaled; float motor2 = throttle_scaled - 0.5*steering_scaled; channel_steer->servo_out = 4500*motor1; channel_throttle->servo_out = 100*motor2; channel_steer->calc_pwm(); channel_throttle->calc_pwm(); } } #if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS // send values to the PWM timers for output // ---------------------------------------- channel_steer->output(); channel_throttle->output(); // Route configurable aux. functions to their respective servos g.rc_2.output_ch(CH_2); g.rc_4.output_ch(CH_4); g.rc_5.output_ch(CH_5); g.rc_6.output_ch(CH_6); g.rc_7.output_ch(CH_7); g.rc_8.output_ch(CH_8); #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 g.rc_9.output_ch(CH_9); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_APM2 || CONFIG_HAL_BOARD == HAL_BOARD_PX4 g.rc_10.output_ch(CH_10); g.rc_11.output_ch(CH_11); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 g.rc_12.output_ch(CH_12); #endif #endif } static bool demoing_servos; static void demo_servos(uint8_t i) { while(i > 0) { gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!")); demoing_servos = true; #if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS hal.rcout->write(1, 1400); mavlink_delay(400); hal.rcout->write(1, 1600); mavlink_delay(200); hal.rcout->write(1, 1500); #endif demoing_servos = false; mavlink_delay(400); i--; } }