/// @file AC_PID.cpp /// @brief Generic PID algorithm #include #include "AC_PID.h" const AP_Param::GroupInfo AC_PID::var_info[] = { // @Param: P // @DisplayName: PID Proportional Gain // @Description: P Gain which produces an output value that is proportional to the current error value AP_GROUPINFO("P", 0, AC_PID, _kp, 0), // @Param: I // @DisplayName: PID Integral Gain // @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error AP_GROUPINFO("I", 1, AC_PID, _ki, 0), // @Param: D // @DisplayName: PID Derivative Gain // @Description: D Gain which produces an output that is proportional to the rate of change of the error AP_GROUPINFO("D", 2, AC_PID, _kd, 0), // 3 was for uint16 IMAX // 4 is used by TradHeli for FF // @Param: IMAX // @DisplayName: PID Integral Maximum // @Description: The maximum/minimum value that the I term can output AP_GROUPINFO("IMAX", 5, AC_PID, _imax, 0), // @Param: FILT // @DisplayName: PID Input filter frequency in Hz // @Description: Input filter frequency in Hz // @Units: Hz AP_GROUPINFO("FILT", 6, AC_PID, _filt_hz, AC_PID_FILT_HZ_DEFAULT), // @Param: FF // @DisplayName: FF FeedForward Gain // @Description: FF Gain which produces an output value that is proportional to the demanded input AP_GROUPINFO("FF", 7, AC_PID, _ff, 0), AP_GROUPEND }; // Constructor AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_imax, float initial_filt_hz, float dt, float initial_ff) : _dt(dt), _integrator(0.0f), _input(0.0f), _derivative(0.0f) { // load parameter values from eeprom AP_Param::setup_object_defaults(this, var_info); _kp = initial_p; _ki = initial_i; _kd = initial_d; _imax = fabsf(initial_imax); filt_hz(initial_filt_hz); _ff = initial_ff; // reset input filter to first value received _flags._reset_filter = true; memset(&_pid_info, 0, sizeof(_pid_info)); } // set_dt - set time step in seconds void AC_PID::set_dt(float dt) { // set dt and calculate the input filter alpha _dt = dt; } // filt_hz - set input filter hz void AC_PID::filt_hz(float hz) { _filt_hz.set(fabsf(hz)); // sanity check _filt_hz _filt_hz = MAX(_filt_hz, AC_PID_FILT_HZ_MIN); } // set_input_filter_all - set input to PID controller // input is filtered before the PID controllers are run // this should be called before any other calls to get_p, get_i or get_d void AC_PID::set_input_filter_all(float input) { // don't process inf or NaN if (!isfinite(input)) { return; } // reset input filter to value received if (_flags._reset_filter) { _flags._reset_filter = false; _input = input; _derivative = 0.0f; } // update filter and calculate derivative float input_filt_change = get_filt_alpha() * (input - _input); _input = _input + input_filt_change; if (_dt > 0.0f) { _derivative = input_filt_change / _dt; } } // set_input_filter_d - set input to PID controller // only input to the D portion of the controller is filtered // this should be called before any other calls to get_p, get_i or get_d void AC_PID::set_input_filter_d(float input) { // don't process inf or NaN if (!isfinite(input)) { return; } // reset input filter to value received if (_flags._reset_filter) { _flags._reset_filter = false; _input = input; _derivative = 0.0f; } // update filter and calculate derivative if (_dt > 0.0f) { float derivative = (input - _input) / _dt; _derivative = _derivative + get_filt_alpha() * (derivative-_derivative); } _input = input; } float AC_PID::get_p() { _pid_info.P = (_input * _kp); return _pid_info.P; } float AC_PID::get_i() { if(!is_zero(_ki) && !is_zero(_dt)) { _integrator += ((float)_input * _ki) * _dt; if (_integrator < -_imax) { _integrator = -_imax; } else if (_integrator > _imax) { _integrator = _imax; } _pid_info.I = _integrator; return _integrator; } return 0; } float AC_PID::get_d() { // derivative component _pid_info.D = (_kd * _derivative); return _pid_info.D; } float AC_PID::get_ff(float requested_rate) { _pid_info.FF = (float)requested_rate * _ff; return _pid_info.FF; } float AC_PID::get_pi() { return get_p() + get_i(); } float AC_PID::get_pid() { return get_p() + get_i() + get_d(); } void AC_PID::reset_I() { _integrator = 0; } void AC_PID::load_gains() { _kp.load(); _ki.load(); _kd.load(); _imax.load(); _imax = fabsf(_imax); _filt_hz.load(); } // save_gains - save gains to eeprom void AC_PID::save_gains() { _kp.save(); _ki.save(); _kd.save(); _imax.save(); _filt_hz.save(); } /// Overload the function call operator to permit easy initialisation void AC_PID::operator() (float p, float i, float d, float imaxval, float input_filt_hz, float dt, float ffval) { _kp = p; _ki = i; _kd = d; _imax = fabsf(imaxval); _filt_hz = input_filt_hz; _dt = dt; _ff = ffval; } // calc_filt_alpha - recalculate the input filter alpha float AC_PID::get_filt_alpha() const { if (is_zero(_filt_hz)) { return 1.0f; } // calculate alpha float rc = 1/(M_2PI*_filt_hz); return _dt / (_dt + rc); }